Câu hỏi:
12/07/2024 1,898Cho tam giác ABC vuông tại A, đường cao AH, biết AH : AC = 3: 5 và AB = 15cm.
a) Tính HB, HC.
b) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh AB.AC = EF.BC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét ΔABH và ΔCBA có:
chung
⇒ ΔABH ∽ ΔCBA(g.g)
⇒
Hay
Xét ΔABC vuông tại A, đường cao AH có:
AB2 = HB.BC ( hệ thức lượng trong Δ vuông )
⇔ 152 = HB.25
⇔ 225 = HB.25
⇔ HB = 9 (cm)
HB + HC = BC
⇔ 9 + HC = 25
⇔ HC = 16(cm)
b) Xét tứ giác AEHF có:
Nên AEHF là hình chữ nhật
⇒ AH = EF
Xét ΔABC vuông tại A, đường cao AH có:
AB.AC = AH.BC (hệ thức lượng trong Δ vuông)
⇒ AB.AC = EF.BC (vì AH = EF).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa hai cạnh bên AD và BC. Chứng minh: OA = OB; OC = OD.
Câu 3:
Cho dãy số 1, 2, 3, 4, ..., 199, 200; hỏi dãy số có bao nhiêu số chẵn, bao nhiêu số lẻ?
Câu 5:
Một sản phẩm được hạ giá 60%. Hỏi sản phẩm đó phải tăng giá lên bao nhiêu % để trở về giá ban đầu?
Câu 6:
Câu 7:
Hai số lẻ có tổng là số nhỏ nhất có 4 chữ số và ở giữa hai số lẻ đó có 4 số lẻ tìm hai số đó.
về câu hỏi!