Câu hỏi:
16/02/2024 289Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E, trên tia đối của CA lấy điểm F sao cho AD = BE = CF. Chứng minh rằng tam giác DEF đều.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét tam giác EBD và tam giác FCE có:
EC = DB (vì AB = BC; AD = EB nên EB + BC = AB + AD)
(cùng là 2 góc ngoài của 1 tam giác đều)
EB = FC (giả thiết)
Suy ra: ∆EBD = ∆FCE (c.g.c)
⇒ DE = EF (1)
Chứng minh tương tự: ∆EBD = ∆DAF (c.g.c)
⇒ DE = FD (2)
Từ (1) và (2): DE = DF = EF
Vậy tam giác DEF đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa hai cạnh bên AD và BC. Chứng minh: OA = OB; OC = OD.
Câu 3:
Cho dãy số 1, 2, 3, 4, ..., 199, 200; hỏi dãy số có bao nhiêu số chẵn, bao nhiêu số lẻ?
Câu 5:
Một sản phẩm được hạ giá 60%. Hỏi sản phẩm đó phải tăng giá lên bao nhiêu % để trở về giá ban đầu?
Câu 6:
Câu 7:
Hai số lẻ có tổng là số nhỏ nhất có 4 chữ số và ở giữa hai số lẻ đó có 4 số lẻ tìm hai số đó.
về câu hỏi!