Câu hỏi:

16/02/2024 721 Lưu

Chứng minh vì sao số có ước lẻ là số chính phương.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi P là một số chính phương.

Ta có: P = k2 (k ℕ)

Giả sử k phân tích ra thừa số nguyên tố là k = ax.by.cz.... (a, b, c là các số nguyên tố)

 P = (ax.by.cz....)2

 P = a2x.b2y.c2z

Vì 2 chia hết cho 2 nên 2x, 2y, 2z, ... cũng chia hết cho 2

 2x, 2y, 2z, ... là số chẵn

Số lượng ước của P là (2x + 1)(2y + 1)(2z + 1)...

Vì 2x, 2y, 2z, ... là số chẵn nên 2x + 1, 2y + 1, 2z + 1, ... là số lẻ

 (2x + 1)(2y + 1)(2z + 1)... là số lẻ

 Số lượng ước của P là 1 số lẻ

Vậy số chính phương luôn có số ước là 1 số lẻ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa hai cạnh bên AD và BC. Chứng minh: OA = OB; OC = OD. (ảnh 1)

Xét ∆ADC và ∆BCD, ta có:

AD = BC (tính chất hình thang cân)

ADC^=BCD^ (gt)

DC chung

Do đó: ∆ADC = ∆BCD (c.g.c) ⇒ ACD^=BDC^

Trong ∆OCD ta có: ACD^=BDC^

∆OCD cân tại O

OC = OD (1)

AC = BD (tính chất hình thang cân)

AO + OC = BO + OD (2)

Từ (1) và (2) suy ra: AO = BO.

Vậy OA = OB; OC = OD.

b) Theo phần a có: OA = OB

∆ADC = ∆BCD (c.g.c)

∆EDC cân tại E

EC = ED nên E thuộc đường trung trực CD

OC = OD nên O thuộc đường trung trực CD

E ≠ O. Vậy OE là đường trung trực của CD.

Ta có: BD= AC (tính chất hình thang cân)

EB + ED = EA + EC mà ED = EC

EB = EA nên E thuộc đường trung trực AB

OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB

E ≠ O. Vậy OE là đường trung trực của AB.

Lời giải

Tổng số hạng của dãy là:

(200 – 1) : 1 + 1 = 200 (số hạng)

Số lẻ bắt đầu từ 1 và kết thúc là 199, mỗi số lẻ cách nhau 2 đơn vị

Số các số lẻ là:

(199 – 1) : 2 + 1 = 100 (số lẻ)

Số các số chẵn là:

200 – 100 = 100 (số chẵn).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP