Câu hỏi:

21/02/2024 222

Cho hình bình hành ABCD và điểm S không nằm trên (ABCD). O là giao điểm của AC và BD. Gọi E, F, H theo thứ tự là trung điểm của SA; SD và AB. Khẳng định đúng trong các khẳng định sau là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Cho hình bình hành ABCD và điểm S không nằm trên (ABCD). O là giao điểm của AC và BD. (ảnh 1)

Ta có EF là đường trung bình của tam giác SAD suy ra: EF // AD  (1).

OH là đường trung bình của tam giác ABC suy ra: OH // BC // AD (2).

Từ (1) và (2) suy ra : EF // OH // AD nên 4 điểm E; F; O; H đồng phẳng

Lại có: EH // SB; OH // BC; EH, OH (EFOH) và SB, SC (SBC) nên (EFOH) // (SBC) hay (EOF) // (SBC).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Cho hình chóp S.ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh SA, SB, SC và SD. Khẳng định sai trong các khẳng định sau là (ảnh 1)

* Xét khẳng định: MN // (ABCD)

Do M và N lần lượt là trung điểm của SA và SB

MN là đường trung bình của tam giác SAB và MN // AB.

Mà AB (ABCD) nên MN // (ABCD)   (1)

A đúng.

* Xét khẳng định: MP // (ABCD).

Do M và P lần lượt là trung điểm của SA và SC

MP là đường trung bình của tam giác SAC và MP // AC

Mà AC (ABCD) nên MP // (ABCD)  (2)

B đúng.

Từ (1) và (2) và kết hợp với MN và MP là hai đường thẳng cắt nhau tại M và cùng thuộc (MNPQ) ta suy ra: (ABCD) // (MNPQ)

D đúng.

Vậy khẳng định sai là C.

Lời giải

Đáp án đúng là: C

Cho hình chóp S.ABC; gọi G, H là trọng tâm tam giác SAC và SBC. Gọi M là trung điểm của BC.  (ảnh 1)

Gọi M và N là trung điểm của BC và AC.

Do G, H lần lượt là trọng tâm tam giác SAC và SBC nên:

 SHSM=SGSN=23.

Suy ra GH // HK.

Mà HK (ABC) nên GH // (ABC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP