Cho hình chóp S.ABCD có đáy là hình thang; đáy lớn AB. Gọi I; J; K lần lượt là 3 điểm trên SA; AB; BC. Gọi E là giao điểm của AK và BD; F là giao điểm của IK và SE; M là giao điểm của JK và BD. Tìm giao điểm của (IJK) và SD.
Cho hình chóp S.ABCD có đáy là hình thang; đáy lớn AB. Gọi I; J; K lần lượt là 3 điểm trên SA; AB; BC. Gọi E là giao điểm của AK và BD; F là giao điểm của IK và SE; M là giao điểm của JK và BD. Tìm giao điểm của (IJK) và SD.
Quảng cáo
Trả lời:

Chọn mp(SBD) chứa SD. Tìm giao tuyến của (SBD) và (IJK)
Có F = IK ∩ SE
Suy ra:
Suy ra: F ∈ (IJK) ∩ (SBD) (1)
Trong mp(ABCD) gọi: M = JK ∩ BD
Suy ra:
Suy ra: M ∈ (IJK) ∩ (SBD) (2)
Từ (1) và (2): MF là giao tuyến của (IJK) và (SBD)
Trong mp(SBD) gọi N = SD ∩ MF
⇒
⇒ N ∈ (IJK) ∩ SD
Vậy giao điểm của SD và (IJK) là giao điểm của SD và MF.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A = sin(a – b) = sina.cosb – sinb.cosa =
Lời giải

Trong (ABCD) gọi I = AC ∩ BD
Ta có: I ∈ AC ⊂ (SAC)
S ∈ (SAC)
Suy ra: SI ⊂ (SAC)
Trong (SAC) gọi K = SI ∩ MC ta có:
K ∈ MC
S ∈ SI ⊂ (SAC)
Suy ra: K = MC ∩ (SAC).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.