Câu hỏi:

19/08/2025 33,199 Lưu

Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song

song với MP, cắt đường thẳng PQ tại K. Chứng minh:

a) MNPQ là hình thang cân.

b) ∆MPQ = ∆NQP.

c) Tam giác NKQ cân.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song song với MP, cắt đường thẳng PQ tại K. Chứng minh: (ảnh 1)

a) Hình thang MNPQ có MP = NQ (gt)
Hình thang MNPQ là hình thang cân 

 (do hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân)

b) Hình thang MNPQ là hình thang cân

MQ = NP (do trong hình thang cân thì hai cạnh bên bằng nhau.)
Xét ΔMPQ và ΔNQP có

MQ = NP (cmt)
MP = NQ (gt)
PQ: chung

ΔMPQ = ΔNQP (c.c.c)

c) Ta có: ΔMPQ = ΔNQP (cmt)
 MPQ^=NQK^ (1) ( 2 góc tương ứng)
Mà NK // MP
MPQ^=NKQ^ ( 2 góc đồng vị) (2)
Từ (1) và (2) 
 NQK^=NKQ^

ΔNQK cân tại N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. a) Tìm giao điểm I của AM và (SBD).  (ảnh 1)

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO (SAC), SO (SBD)

Trong (SAC) gọi I = AM ∩ SO ta có:

I AM, I SO (SBD)

Nên I (SBD)

Suy ra: I = AM ∩ (SBD)

b) Trong (SBD) gọi P = BI ∩ SD ta có:

P SD

P BI (ABM) nên P (ABM)

Suy ra: P = SD ∩ (ABM)

Ta có: I là trọng tâm tam giác SAC nên SISO=23

Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD, SISO=23

Nên I là trọng tâm tam giác SBD

Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD

Mà BI ∩ SD = P nên P là trung điểm của SD.

c) Trong (SBD) gọi K = MN ∩ BP ta có:

K MN

K BP (SBD) nên K (SBD)

Vậy K = MN ∩ (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP