Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song
song với MP, cắt đường thẳng PQ tại K. Chứng minh:
a) MNPQ là hình thang cân.
b) ∆MPQ = ∆NQP.
c) Tam giác NKQ cân.
Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song
song với MP, cắt đường thẳng PQ tại K. Chứng minh:
a) MNPQ là hình thang cân.
b) ∆MPQ = ∆NQP.
c) Tam giác NKQ cân.
Quảng cáo
Trả lời:

a) Hình thang MNPQ có MP = NQ (gt)
⇒ Hình thang MNPQ là hình thang cân
(do hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân)
b) Hình thang MNPQ là hình thang cân
⇒ MQ = NP (do trong hình thang cân thì hai cạnh bên bằng nhau.)
Xét ΔMPQ và ΔNQP có
MQ = NP (cmt)
MP = NQ (gt)
PQ: chung
⇒ ΔMPQ = ΔNQP (c.c.c)
c) Ta có: ΔMPQ = ΔNQP (cmt)
⇒ (1) ( 2 góc tương ứng)
Mà NK // MP
⇒ ( 2 góc đồng vị) (2)
Từ (1) và (2) ⇒
⇒ ΔNQK cân tại N.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A = sin(a – b) = sina.cosb – sinb.cosa =
Lời giải

Trong (ABCD) gọi I = AC ∩ BD
Ta có: I ∈ AC ⊂ (SAC)
S ∈ (SAC)
Suy ra: SI ⊂ (SAC)
Trong (SAC) gọi K = SI ∩ MC ta có:
K ∈ MC
S ∈ SI ⊂ (SAC)
Suy ra: K = MC ∩ (SAC).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.