Câu hỏi:

12/07/2024 27,142 Lưu

Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song

song với MP, cắt đường thẳng PQ tại K. Chứng minh:

a) MNPQ là hình thang cân.

b) ∆MPQ = ∆NQP.

c) Tam giác NKQ cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang MNPQ (MN // PQ), có MP = NQ. Qua N kẻ đường thắng song song với MP, cắt đường thẳng PQ tại K. Chứng minh: (ảnh 1)

a) Hình thang MNPQ có MP = NQ (gt)
Hình thang MNPQ là hình thang cân 

 (do hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân)

b) Hình thang MNPQ là hình thang cân

MQ = NP (do trong hình thang cân thì hai cạnh bên bằng nhau.)
Xét ΔMPQ và ΔNQP có

MQ = NP (cmt)
MP = NQ (gt)
PQ: chung

ΔMPQ = ΔNQP (c.c.c)

c) Ta có: ΔMPQ = ΔNQP (cmt)
 MPQ^=NQK^ (1) ( 2 góc tương ứng)
Mà NK // MP
MPQ^=NKQ^ ( 2 góc đồng vị) (2)
Từ (1) và (2) 
 NQK^=NKQ^

ΔNQK cân tại N.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD với ABCD  có các cạnh đối diện không song song với nhau và M là một điểm trên SA. Tìm giao điểm của đường thẳng và MC và (SBD). (ảnh 1)

Trong (ABCD) gọi I = AC ∩ BD

Ta có: I AC (SAC)

S (SAC)

Suy ra: SI (SAC)

Trong (SAC) gọi K = SI ∩ MC ta có:

K MC

S SI (SAC)

Suy ra: K = MC ∩ (SAC).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP