Câu hỏi:

19/08/2025 2,002 Lưu

Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC. Trên AC, CD ta lấy các điểm M, N sao cho AMAH=DNDC. Chứng minh bốn điểm M, B, C, N nằm trên một đường tròn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chữ nhật ABCD, kẻ BH vuông góc với AC. Trên AC, CD ta lấy các điểm M, N sao cho  (ảnh 1)

Kẻ NI // BC

Ta có: DNDC=AIAB=AMAH

Suy ra: MI // BH

⇒ IMB^=MBH^1

Tứ giác IBCN có

IBC^=BIN^=BCN^

Tứ giác IBCN là hình chữ nhật

⇒ NBC^=BCI^2

Xét tứ giác IMCB có

IMC^=90° (vì IM // BH và BH vuông góc AC)

IBC^=90°

Tứ giác IMCB là tứ giác nội tiếp đường tròn

⇒ IMB^=ICB^3 (cùng chắn cung IB) 

Từ (1), (2), (3) ⇒ MBH^=NBC^

⇒ BMC^=90°MBH^=90°NBC^=CNB^

Tứ giác MBCN nội tiếp đường tròn 

Hay M, B, C, N cùng nằm trên một đường tròn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

cosa=1sin2a=1517;cosb=11+tan2b=1213

A = sin(a – b) = sina.cosb – sinb.cosa = 817.12131517.513=21221

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SC. a) Tìm giao điểm I của AM và (SBD).  (ảnh 1)

a) Trong (ABCD) gọi O = AC ∩ BD. Suy ra SO (SAC), SO (SBD)

Trong (SAC) gọi I = AM ∩ SO ta có:

I AM, I SO (SBD)

Nên I (SBD)

Suy ra: I = AM ∩ (SBD)

b) Trong (SBD) gọi P = BI ∩ SD ta có:

P SD

P BI (ABM) nên P (ABM)

Suy ra: P = SD ∩ (ABM)

Ta có: I là trọng tâm tam giác SAC nên SISO=23

Xét tam giác SBD có SO là trung tuyến ứng với cạnh BD, SISO=23

Nên I là trọng tâm tam giác SBD

Suy ra: BI là trung tuyến của tam giác SBD ứng với cạnh SD

Mà BI ∩ SD = P nên P là trung điểm của SD.

c) Trong (SBD) gọi K = MN ∩ BP ta có:

K MN

K BP (SBD) nên K (SBD)

Vậy K = MN ∩ (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP