Câu hỏi:

03/03/2024 309

Cho tam giác ABC có BC = a, AC = b, Ab = c, đường phân giác AD.

1. Tính độ dài BD, DC.

2. Tia phân giác của góc B cắt AD tại I. Tính tỉ số AI : ID.

3. Cho BC bằng trung bình cộng của AB và AC, gọi G là trọng tâm của tam giác ABC. Chứng minh IG song song BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có BC = a, AC = b, Ab = c, đường phân giác AD. 1. Tính độ dài BD, DC. 2 (ảnh 1)

1. Vì AD là phân giác của tam giác ABC nên DBAB=DCAC=DB+DCAB+AC=ab+c

Vậy DB=acb+c;DC=abb+c

2. Vì BI là đường phân giác của tam giác BAD nên: AIID=ABBD=c:acb+c=b+ca

3. Ta có: a=b+c2AIID=2

Mặt khác AGGM=2

Do đó: AGGM=AIID=2

Suy ra: IG // BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

Lời giải

Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) (ảnh 1)

a. Vì AB, AC là tiếp tuyến của (O)
AO BC = H

b. Ta có: OE OB

OE // AB vì AB là tiếp tuyến của (O)

OB AB

 CAO^=OAB^=AOE^

ΔOAE cân tại E

c.Ta có : AB,AC là tiếp tuyến của (O)

OB AB mà BCAB = H

OH.OA = OB2 = R2

Tương tự QM, QN là tiếp tuyến của (O)

Gọi QO ∩ MN = D

OD.OQ = OM2 = R2 vì OM QM

OH.OA = OD.OQ

 OHOD=OQOA

ΔODA ΔOHQ(c.g.c)

ADO^=QHO^ADO^=90°

AD OQ

Mà MN OQ = D
A, M, D, N thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP