Câu hỏi:

19/08/2025 1,409 Lưu

Có 6 học sinh sẽ được sắp xếp ngồi vào 6 chỗ đã được ghi số thứ tự trên 1 bàn dài.

1.Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn.

2. Tìm số cách sắp xếp 6 học sinh này ngồi vào bàn sao cho 2 học sinh A và B không ngồi cạnh nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có :

1) 6 người vào 6 chỗ.

Có 6! cách xếp.

2) Xếp học sinh A ngồi cạnh học sinh B

Ghép học sinh A và B thành 1 người.

Xếp 5 học sinh vào 5 chỗ ngồi ta có 5! cách xếp.

Bản thân 2 học sinh A và học sinh B có thể đổi chỗ cho nhau.

Do đó có: 2.5! cách để xếp 2 học sinh A và B ngồi cạnh nhau.

Có : 6! − 2.5! = 480 cách xếp 22 học sinh A và B không ngồi cạnh nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

Lời giải

Xét tam giác ABC có: cosB^=AB2+BC2AC22.AB.BC=1116

Xét tam giác ABM có: cosB^=AB2+BM2AM22.AB.BM=1116

 1116=62+42AM22.6.4

 AM=19

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP