Câu hỏi:
03/03/2024 155Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.
Quảng cáo
Trả lời:
Vì G là giao điểm của hai đường trung tuyến BN và CM của tam giác ABC nên G là trọng tâm tam giác ABC.
Do đó
Mà CM = BN (giả thiết) nên CG = BG.
Δ∆BGC có CG = BG nên Δ∆BGC cân tại G.
Suy ra (tính chất tam giác cân)
Xét Δ∆BMC và Δ∆CNB có:
MC = NB (theo giả thiết),
(do )
BC là cạnh chung.
Do đó Δ∆BMC = Δ∆CNB (c.g.c).
Suy ra (hai góc tương ứng).
Tam giác ABC có nên Δ∆ABC cân tại A.
Vậy nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. Tứ giác AEFM có 3 góc vuông nên AEFM là hình chữ nhật
b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB
ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến
⇒ F là trung điểm AC (1)
ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến
⇒ E là trung điểm AB (2)
Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC
⇒ EF = BC (đpcm)
c, EF là đường trung bình của ΔABC ⇒ EF // BC
⇒ Tứ giác EKMF là hình thang
ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền
⇒ KF = FA mà FA = ME (do AEMF là hình chữ nhật)
⇒ KF = ME
⇒ Hình thang EKMF là hình thang cân (đpcm).
Lời giải
a. Vì AB, AC là tiếp tuyến của (O)
⇒ AO ⊥ BC = H
b. Ta có: OE ⊥ OB
⇒ OE // AB vì AB là tiếp tuyến của (O)
⇒ OB ⊥ AB
⇒
⇒ΔOAE cân tại E
c.Ta có : AB,AC là tiếp tuyến của (O)
⇒ OB ⊥ AB mà BC⊥AB = H
⇒ OH.OA = OB2 = R2
Tương tự QM, QN là tiếp tuyến của (O)
Gọi QO ∩ MN = D
⇒ OD.OQ = OM2 = R2 vì OM ⊥ QM
⇒ OH.OA = OD.OQ
⇒
⇒ΔODA ∽ ΔOHQ(c.g.c)
⇒ AD ⊥ OQ
Mà MN ⊥ OQ = D
⇒ A, M, D, N thẳng hàng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)