Câu hỏi:

11/07/2024 521

Trong tam giác ABC, nếu có 2ha​ = hb ​+ hc​ thì:

A. 2sinA=1sinB+1sinC

B. 2sinA = sinB + sinC

C. sinA = 2sinB + 2sinC

D. 2sinA=1sinB1sinC

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

2ha​ = hb ​+ hc

 4SABCa=2SABCb+2SABCc

 2a=1b+1c

Áp dụng định lí sin ta có:

1sinB+1sinC=2Rb+2Rc=2R1b+1c=2R.2a=2sinA

Vậy 2sinA=1sinB+1sinC

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác ABC có BC = 12, CA = 9, AB = 6. Điểm M nằm trên cạnh BC sao cho BM = 4. Độ dài AM bằng bao nhiêu?

Xem đáp án » 12/07/2024 12,258

Câu 2:

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (E thuộc AB), kẻ MF vuông góc AC (F thuộc AC ).

a) Tứ giác AEMF là hình gì? Vì sao?

b) Chứng minh EF = 12BC

c) Gọi K là chân đường vuông góc kẻ từ A đến BC. Chứng minh rằng tứ giác EKMF là hình thang cân.

Xem đáp án » 12/07/2024 9,736

Câu 3:

Cho tam giác ABC có AB = 4, AC = 6 và trung tuyến BM = 3. Tính cạnh BC?

Xem đáp án » 12/07/2024 7,219

Câu 4:

Chứng minh đẳng thức sau: sinx+cosxsin3x=cot3x+cot2xcotx+1

Xem đáp án » 12/07/2024 5,769

Câu 5:

Tam giác ABC có BC=5;AC=3;cotC=2. Tính cạnh AB?

Xem đáp án » 12/07/2024 5,309

Câu 6:

Cho hình vẽ sau biết xAB^=60°;ABy^=120°;BCz^=150°. Chứng minh

a) Ax // By.

b) Biết ABC^=90°, chứng minh Cz // By.

Cho hình vẽ sau biết góc xAB = 60 độ, góc ABy= 120 độ, góc BCz= 150 độ.  (ảnh 1)

Xem đáp án » 12/07/2024 4,959

Câu 7:

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Kẻ Bx, Cy lần lượt vuông góc với AB, AC chúng cắt nhau tại K.

1. Chứng minh tứ giác BHCK là hình bình hành và H, M, K thẳng hàng

2. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân

3. Gọi G là giao điểm của BK và HI, tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2024 3,383

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store