Câu hỏi:

12/07/2024 1,144

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH

1) Giả sử AB = 9cm, AC = 12cm. Tỉnh độ dài các đoạn thẳng BC, BH và AH.

2) Gọi M và N lần lượt là chân các đường vuông góc kẻ từ điểm H đến các đường

thằng AB và AC . Chứng minh AM.AB = AN.AC.

3) Đường thẳng đi qua điểm A và song song với đường MN cắt đường thẳng đi qua điểm C và song song với đường AH tại điểm K. Gọi I là giao điểm của AH và BK. Chứng minh ba điểm M, L, N là ba điểm thẳng hàng.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH (ảnh 1)

1) BC=AB2+AC2=15

ΔABC vuông tại A, AH BC nên AH.BC = AB.AC

Suy ra: AH=AB.ACBC=7,2

BH=AB2AH2=5,4

2) Áp dụng hệ thức lượng trong tam giác vuông AHB, AHC có:

AH2 = AM.AB

AH2 = AN.AC

Suy ra: AM.AB = AN.AC

3) Gọi AB ∩ CK = D

Vì HM AB, HN AC, AB AC

AMHN là hình chữ nhật

     MN // AK, KC // AH

 KCA^=CAH^=HAN^=ANM^=CAK^

ΔKAC cân tại K

AK = KC

Ta có: AB AC AD AC

KAD^=90°KAC^=90°KCA^=D^

ΔKAD cân tại K

AK = KD

KD = KC

Ta có: AH // CD (BC)

 AIKD=BIBK=IHKC

IA = IH

I là trung điểm AH

Mà AMHN là hình chữ nhật

AH ∩ MN tại trung điểm mỗi đường
I là trung điểm MN

M, I, N thẳng hàng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tam giác ABC có BC = 12, CA = 9, AB = 6. Điểm M nằm trên cạnh BC sao cho BM = 4. Độ dài AM bằng bao nhiêu?

Xem đáp án » 12/07/2024 12,184

Câu 2:

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (E thuộc AB), kẻ MF vuông góc AC (F thuộc AC ).

a) Tứ giác AEMF là hình gì? Vì sao?

b) Chứng minh EF = 12BC

c) Gọi K là chân đường vuông góc kẻ từ A đến BC. Chứng minh rằng tứ giác EKMF là hình thang cân.

Xem đáp án » 12/07/2024 9,477

Câu 3:

Cho tam giác ABC có AB = 4, AC = 6 và trung tuyến BM = 3. Tính cạnh BC?

Xem đáp án » 12/07/2024 7,182

Câu 4:

Chứng minh đẳng thức sau: sinx+cosxsin3x=cot3x+cot2xcotx+1

Xem đáp án » 12/07/2024 5,762

Câu 5:

Tam giác ABC có BC=5;AC=3;cotC=2. Tính cạnh AB?

Xem đáp án » 12/07/2024 5,270

Câu 6:

Cho hình vẽ sau biết xAB^=60°;ABy^=120°;BCz^=150°. Chứng minh

a) Ax // By.

b) Biết ABC^=90°, chứng minh Cz // By.

Cho hình vẽ sau biết góc xAB = 60 độ, góc ABy= 120 độ, góc BCz= 150 độ.  (ảnh 1)

Xem đáp án » 12/07/2024 4,865

Câu 7:

Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Kẻ Bx, Cy lần lượt vuông góc với AB, AC chúng cắt nhau tại K.

1. Chứng minh tứ giác BHCK là hình bình hành và H, M, K thẳng hàng

2. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân

3. Gọi G là giao điểm của BK và HI, tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2024 3,368

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store