Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC vuông tại A, cạnh huyền a và các cạnh góc vuông b, c.

Giải tam giác vuông ABC khi biết độ dài hai cạnh (ảnh 1)

1. Định lý: Trong một tam giác vuông, mỗi cạnh góc vuông bằng

- Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.

- Cạnh góc vuông kia nhân với tan góc đối hoặc nhân với cot góc kề.

2. Như vậy, trong tam giác ABC vuông tại A, ta có hệ thức

• b = a.sinB = a.cosC = c.tanB = c.cotC

• c = a.sinC = a.cosB = b.tanC = b.cotB

Phương pháp giải:

 Áp dụng định lý Py-ta-go để tìm cạnh còn lại.

• Xác định cạnh kề, cạnh đối, viết tỉ số lượng giác.

• Tính góc nhọn còn lại nhờ quan hệ phụ nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

Lời giải

Xét tam giác ABC có: cosB^=AB2+BC2AC22.AB.BC=1116

Xét tam giác ABM có: cosB^=AB2+BM2AM22.AB.BM=1116

 1116=62+42AM22.6.4

 AM=19

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP