Quảng cáo
Trả lời:
Cho tam giác ABC vuông tại A, cạnh huyền a và các cạnh góc vuông b, c.
1. Định lý: Trong một tam giác vuông, mỗi cạnh góc vuông bằng
- Cạnh huyền nhân với sin góc đối hoặc nhân với côsin góc kề.
- Cạnh góc vuông kia nhân với tan góc đối hoặc nhân với cot góc kề.
2. Như vậy, trong tam giác ABC vuông tại A, ta có hệ thức
• b = a.sinB = a.cosC = c.tanB = c.cotC
• c = a.sinC = a.cosB = b.tanC = b.cotB
Phương pháp giải:
Áp dụng định lý Py-ta-go để tìm cạnh còn lại.
• Xác định cạnh kề, cạnh đối, viết tỉ số lượng giác.
• Tính góc nhọn còn lại nhờ quan hệ phụ nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. Tứ giác AEFM có 3 góc vuông nên AEFM là hình chữ nhật
b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB
ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến
⇒ F là trung điểm AC (1)
ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến
⇒ E là trung điểm AB (2)
Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC
⇒ EF = BC (đpcm)
c, EF là đường trung bình của ΔABC ⇒ EF // BC
⇒ Tứ giác EKMF là hình thang
ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền
⇒ KF = FA mà FA = ME (do AEMF là hình chữ nhật)
⇒ KF = ME
⇒ Hình thang EKMF là hình thang cân (đpcm).
Lời giải
a. Vì AB, AC là tiếp tuyến của (O)
⇒ AO ⊥ BC = H
b. Ta có: OE ⊥ OB
⇒ OE // AB vì AB là tiếp tuyến của (O)
⇒ OB ⊥ AB
⇒
⇒ΔOAE cân tại E
c.Ta có : AB,AC là tiếp tuyến của (O)
⇒ OB ⊥ AB mà BC⊥AB = H
⇒ OH.OA = OB2 = R2
Tương tự QM, QN là tiếp tuyến của (O)
Gọi QO ∩ MN = D
⇒ OD.OQ = OM2 = R2 vì OM ⊥ QM
⇒ OH.OA = OD.OQ
⇒
⇒ΔODA ∽ ΔOHQ(c.g.c)
⇒ AD ⊥ OQ
Mà MN ⊥ OQ = D
⇒ A, M, D, N thẳng hàng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)