Câu hỏi:
12/07/2024 478Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
a) Chứng minh E và F đối xứng với nhau qua AB.
b) Chứng minh tứ giác MEBF là hình thoi.
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Do AM = DN suy ra: MADN là hình bình hành
⇒
Ta có ∆MPE = ∆BPE nên EP = FP.
Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.
b) Tứ giác MEBF có MB ∩ EF = P
Lại có P trung điểm BM, P là trung điểm EF, MB ⊥ EF.
Suy ra: MEBF là hình thoi.
c) Để BNCE là hình thang cân thì
Mà nên ∆MEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có BC = 12, CA = 9, AB = 6. Điểm M nằm trên cạnh BC sao cho BM = 4. Độ dài AM bằng bao nhiêu?
Câu 2:
Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (E thuộc AB), kẻ MF vuông góc AC (F thuộc AC ).
a) Tứ giác AEMF là hình gì? Vì sao?
b) Chứng minh EF = BC
c) Gọi K là chân đường vuông góc kẻ từ A đến BC. Chứng minh rằng tứ giác EKMF là hình thang cân.
Câu 3:
Cho tam giác ABC có AB = 4, AC = 6 và trung tuyến BM = 3. Tính cạnh BC?
Câu 6:
Cho hình vẽ sau biết . Chứng minh
a) Ax // By.
b) Biết , chứng minh Cz // By.
Câu 7:
Cho tam giác ABC nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Kẻ Bx, Cy lần lượt vuông góc với AB, AC chúng cắt nhau tại K.
1. Chứng minh tứ giác BHCK là hình bình hành và H, M, K thẳng hàng
2. Gọi I là điểm đối xứng với H qua BC. Chứng minh tứ giác BIKC là hình thang cân
3. Gọi G là giao điểm của BK và HI, tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
về câu hỏi!