Câu hỏi:

12/07/2024 1,053

Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.

a) Chứng minh E và F đối xứng với nhau qua AB.

b) Chứng minh tứ giác MEBF là hình thoi.

c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN (ảnh 1)

a) Do AM = DN suy ra: MADN là hình bình hành

 D^=AMN^=EMB^=MBC^

Ta có ∆MPE = ∆BPE nên EP = FP.

Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB ∩ EF = P

Lại có P trung điểm BM, P là trung điểm EF, MB  EF.

Suy ra: MEBF là hình thoi.

c) Để BNCE là hình thang cân thì CNE^=BEN^

D^=CNE^=EMB^=MBC^nên ∆MEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì ABC^=60°.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

Lời giải

Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC đến (O) (B, C là các tiếp điểm) (ảnh 1)

a. Vì AB, AC là tiếp tuyến của (O)
AO BC = H

b. Ta có: OE OB

OE // AB vì AB là tiếp tuyến của (O)

OB AB

 CAO^=OAB^=AOE^

ΔOAE cân tại E

c.Ta có : AB,AC là tiếp tuyến của (O)

OB AB mà BCAB = H

OH.OA = OB2 = R2

Tương tự QM, QN là tiếp tuyến của (O)

Gọi QO ∩ MN = D

OD.OQ = OM2 = R2 vì OM QM

OH.OA = OD.OQ

 OHOD=OQOA

ΔODA ΔOHQ(c.g.c)

ADO^=QHO^ADO^=90°

AD OQ

Mà MN OQ = D
A, M, D, N thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP