Quảng cáo
Trả lời:
Ta thấy từng số hạng của M đều chia hết cho 2
Nên M = 2 + 22 + 23 + … + 220 chia hết cho 2 (1)
Lại có: M = 2 + 22 + 23 + … + 220
M = (2 + 23) + (22 + 24) + … + (217 + 219) + (218 + 220)
M = 2(1 + 22) + 22(1 + 22) + … + 217(1 + 22) + 218(1 + 22)
M = (1 + 22)(2 + 22 + … + 217 + 218)
M = 5.(2 + 22 + … + 217 + 218) ⋮ 5 (2)
Từ (1) và (2) suy ra: M chia hết cho 10.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. Tứ giác AEFM có 3 góc vuông nên AEFM là hình chữ nhật
b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB
ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến
⇒ F là trung điểm AC (1)
ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến
⇒ E là trung điểm AB (2)
Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC
⇒ EF = BC (đpcm)
c, EF là đường trung bình của ΔABC ⇒ EF // BC
⇒ Tứ giác EKMF là hình thang
ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền
⇒ KF = FA mà FA = ME (do AEMF là hình chữ nhật)
⇒ KF = ME
⇒ Hình thang EKMF là hình thang cân (đpcm).
Lời giải
Xét tam giác ABC có:
Xét tam giác ABM có:
⇔
⇔
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.