Câu hỏi:

19/08/2025 4,381 Lưu

Cho a, b, c thuộc ℕ*: a2 + b2 = c2. Chứng minh abc chia hết cho 60.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giả sử cả 3 số trên đều không chia hết cho 3

a2 ≡ 1 (mod3) và b2 ≡ 1 (mod3) (bình phương 1 số chia hết cho 3 hoặc chia 3 dư 1)

a2 + b2 ≡ 2 (mod3) nhưng c2 ≡ 1 (mod3) mâu thuẫn

Vậy có ít nhất 1 số chia hết cho 3 (1)

+ Tương tự, có ít nhất 1 số chia hết cho 4, vì giả sử cả 3 số a, b, c đều không chia hết cho 4

a2 ≡ 1 (mod4) và b2 ≡ 1 (mod4)

a2 + b2 ≡ 2 (mod 4) nhưng c2 ≡ 1 (mod 4) mâu thuẫn

Vậy có ít nhất 1 số chia hết cho 4 (2)

+ Tương tự a2 = 1 (mod 5) hoặc a2 = -1 (mod 5) hoặc a2 = 4 (mod 5) và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3

phải có ít nhất 1 số chia hết cho 5 (3)

Từ (1), (2) và (3) abc chia hết cho BCNN(3, 4, 5) = 60 hay abc chia hết 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB <AC), M là trung điểm của BC. Kẻ ME vuông góc AB (ảnh 1)

a. Tứ giác AEFM có 3 góc vuông A^,E^,F^ nên AEFM là hình chữ nhật

b. ΔABC là tam giác vuông tại A, có AM là đường trung tuyến nên AM = MC = MB

ΔCMA là tam giác cân tại M (do MC = MA) nên MF là đường cao cũng là đường trung tuyến 

F là trung điểm AC (1)

ΔBMA là tam giác cân tại M (do MA = MB) nên ME là đường cao cũng là đường trung tuyến 
 E là trung điểm AB (2)

Từ (1) và (2) suy ra: EF là đường trung bình của ΔABC

EF = 12BC (đpcm)

c, EF là đường trung bình của ΔABC EF // BC

Tứ giác EKMF là hình thang

ΔAKC vuông tại K có KF là trung tuyến ứng với cạnh huyền

KF = FA mà FA = ME (do AEMF là hình chữ nhật)

KF = ME

Hình thang EKMF là hình thang cân (đpcm).

Lời giải

Xét tam giác ABC có: cosB^=AB2+BC2AC22.AB.BC=1116

Xét tam giác ABM có: cosB^=AB2+BM2AM22.AB.BM=1116

 1116=62+42AM22.6.4

 AM=19

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP