Câu hỏi:

12/07/2024 1,562

Cho hình bình hành ABCD, hai đường chéo cắt nhau ở O. Hai đường thẳng d1 và d2 cùng đi qua O và vuông góc với nhau. Đường thẳng d1 cắt các cạnh AB và CD ở M và P. Đường thẳng d2 cắt các cạnh BC và AD ở N và Q.

a/ Chứng minh tứ giác MNPQ là hình thoi.

b/ Nếu ABCD là hình vuông thì tứ giác MNPQ là hình gì? Hãy chứng minh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình bình hành ABCD, hai đường chéo cắt nhau ở O. Hai đường thẳng d1 và d2 (ảnh 1)

a/ Ta có ABCD là hình bình hành nên AC cắt BD tại trung điểm O mỗi đường

Nên OA = OC; OB = OD

Mà AB // CD nên OMOP=OAOC=1

Nên OM = OP hay O là trung điểm MP

Tương tự: O là trung điểm NQ

Vì d1 vuông góc d2 tức NQ vuông góc MP

Suy ra: NQ MP = O là trung điểm mỗi đường

Vậy MNPQ là hình thoi

b/ Nếu ABCD là hình vuông thì AC BD

Suy ra: MOB^=90°BON^=NOC^

Mà OB = OC; OBM^=OBA^=45°=OCB^=OCN^

Xét tam giác OBM và tam giác OCN có:

OBM^=OCN^

OB = OC

MOB^=NOC^

Nên: ∆OBM = ∆OCN (g.c.g)

Suy ra: OM = ON

Kết hợp phần a nên MNPQ là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(P) đi qua A(-1; 0) nên: 0 = a – b + c 

c = b - a (1)

(P) đi qua đỉnh B(1; 2) nên:

2 = a + b + c

Vậy T = a + b + c = 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP