CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao  (ảnh 2)

Ta có SE  là trung đoạn nên E  là trung điểm của AB .

Xét ΔABD  E, H  lần lượt là trung điểm của AB, BD .   

Suy ra EH  là đường trung bình của ΔABD  nên EH=12AD=5  (cm) .

Áp dụng định lí Pythagore ΔSEH  vuông tại H  có: SE2=SH2+EH2  

Suy ra SH2=SE2EH22=13252

Do đó SH=12  cm .

Vậy chiều cao của hộp quà là 12 cm.

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao  (ảnh 3)

a) Xét ΔABD  ΔACE  

BAD^=CAE^ADB^=AEC^  =90°

Do đó ΔABD  ΔACE   (g.g) .

b) Từ câu a: ΔABD  ΔACE  suy ra ABAC=ADAE .

 

Do đó  AE=ACADAB=524=2,5cm.

Vậy AE = 2,5 cm

c) Từ câu a: ΔABD  ΔACE  suy ra ABAC=ADAE  hay ABAD=ACAE .

Xét ΔADE  ΔABC  có:

DAE^=BAC^; ABAD=ACAE  (cmt)

Do đó ΔADE  ΔABC  (c.g.c)

Suy ra ADE^=ABC^  (hai góc tương ứng) (1)

Mặt khác, ta có:

ADE^+EDH^=ADB^=90°  (2)

ABC^+BCH^=180°BEC^=180°90°=90°  (3)

Từ (1), (2) và (3) nên suy ra EDH^=BCH^.

Lời giải

a) A=1a2+1b2+2a+b1a+1baba+b2

=1a2+1b2+2ababa+b2=a2+b2+2aba2b2aba+b2

=a+b2a2b2aba+b2=1ab.

b) B=12xy2+24x2y2+12x+y24x2+4xy+y216x

=12xy2+22x+y2xy+12x+y22x+y216x

=2xy2+22x+y2xy+2x+y22x+y22xy22x+y216x

=2xy+2x+y22xy2116x=16x216x2xy2=x2xy2

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP