Câu hỏi:

12/07/2024 26,164

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao của hộp quà.
Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao  (ảnh 1)

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao  (ảnh 2)

Ta có SE  là trung đoạn nên E  là trung điểm của AB .

Xét ΔABD  E, H  lần lượt là trung điểm của AB, BD .   

Suy ra EH  là đường trung bình của ΔABD  nên EH=12AD=5  (cm) .

Áp dụng định lí Pythagore ΔSEH  vuông tại H  có: SE2=SH2+EH2  

Suy ra SH2=SE2EH22=13252

Do đó SH=12  cm .

Vậy chiều cao của hộp quà là 12 cm.

Một hộp quà có dạng là một hình chóp tứ giác đều có cạnh đáy bằng 10 cm, trung đoạn bằng 13 cm. Tính chiều cao  (ảnh 3)

a) Xét ΔABD  ΔACE  

BAD^=CAE^ADB^=AEC^  =90°

Do đó ΔABD  ΔACE   (g.g) .

b) Từ câu a: ΔABD  ΔACE  suy ra ABAC=ADAE .

 

Do đó  AE=ACADAB=524=2,5cm.

Vậy AE = 2,5 cm

c) Từ câu a: ΔABD  ΔACE  suy ra ABAC=ADAE  hay ABAD=ACAE .

Xét ΔADE  ΔABC  có:

DAE^=BAC^; ABAD=ACAE  (cmt)

Do đó ΔADE  ΔABC  (c.g.c)

Suy ra ADE^=ABC^  (hai góc tương ứng) (1)

Mặt khác, ta có:

ADE^+EDH^=ADB^=90°  (2)

ABC^+BCH^=180°BEC^=180°90°=90°  (3)

Từ (1), (2) và (3) nên suy ra EDH^=BCH^.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Rút gọn các biểu thức sau:

a) A=1a2+1b2+2a+b1a+1baba+b2 .

b) B=12xy2+24x2y2+12x+y24x2+4xy+y216x .

Xem đáp án » 12/07/2024 11,923

Câu 2:

Tìm giá trị nhỏ nhất của phân thức B=12124xx2 .

Xem đáp án » 12/07/2024 7,340

Câu 3:

Giá trị của m để đồ thị hàm số y=m1xm+4  đi qua điểm (2;-3)

Xem đáp án » 08/03/2024 5,225

Câu 4:

Một đội thanh niên tình nguyện gồm 11 thành viên đến từ các tỉnh, TP như sau: Kon Tum; Bình Phước; Tây Ninh; Bình Dương; Gia Lai; Bà Rịa – Vũng Tàu; Đồng Nai; Đăk Lăk ; Đăk Nông; Lâm Đồng; TP Hồ Chí Minh, mỗi tỉnh, TP chỉ có đúng một thành viên trong đội. Chọn ngẫu nhiên một thành viên của đội tình nguyện đó.

a) Gọi K là tập hợp gồm các kết quả có thể xảy ra đối với thành viên được chọn. Tính số phần tử của tập hợp K.

b) Tính xác suất của mỗi biến cố sau :

“Thành viên được chọn ra đến từ vùng Tây Nguyên”.

“Thành viên được chọn ra đến từ vùng Đông Nam Bộ”.

Một đội thanh niên tình nguyện gồm 11 thành viên đến từ các tỉnh, TP như sau: Kon Tum; Bình Phước; Tây Ninh; Bình Dương; Gia Lai; Bà Rịa  (ảnh 1)

Xem đáp án » 12/07/2024 4,243

Câu 5:

Cho tam giác DEF vuông tại D Biểu thức nào đúng trong các biểu thức sau?

Cho tam giác DEF vuông tại D Biểu thức nào đúng trong các biểu thức sau? (ảnh 1)

Xem đáp án » 08/03/2024 3,860

Câu 6:

Sử dụng quy tắc đổi dấu, ta đưa phân thức xy6  về dạng phân thức nào sau đây?

Xem đáp án » 08/03/2024 3,460

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store