Câu hỏi:

21/03/2024 246

Một chất điểm chuyển động thẳng được cho bởi phương trình \(s\left( t \right) = \frac{1}{3}{t^3} + {t^2}\), trong đó t tính bằng giây, s tính bằng mét.

a) Tính gia tốc tức thời của chất điểm tại thời điểm t = 3s.

b) Tại thời điểm mà vận tốc của chất điểm bằng 8 m/s thì gia tốc tức thời của chất điểm bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Có \(v\left( t \right) = s'\left( t \right) = {t^2} + 2t\); \(a\left( t \right) = v'\left( t \right) = 2t + 2\)

\(a\left( 3 \right) = 2.3 + 2 = 8\) (m/s2).

b) Có \(a\left( t \right) = v'\left( t \right) = 2t + 2\).

Thời điểm mà vận tốc của chất điểm bằng 8 m/s tức là

\({t^2} + 2t = 8 \Leftrightarrow t = 2\) hoặc \(t = - 4\).

\(t > 0\) nên gia tốc tức thời của chất điểm tại t = 2 là \(a\left( 2 \right) = 2.2 + 2 = 6\left( {{\rm{m/}}{{\rm{s}}^{\rm{2}}}} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Sau \(n\) tháng, người đó lĩnh được số tiền là \(100.{\left( {1 + 0,6\% } \right)^n}\) triệu đồng.

Sau \(n\) tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn ban đầu và lãi) nên \(100.{\left( {1 + 0,6\% } \right)^n} \ge 110 \Leftrightarrow n \ge {\log _{1 + 0,6\% }}\frac{{11}}{{10}} \approx 15,9\).

Vậy sau ít nhất 16 tháng người đó được lĩnh số tiền không ít hơn 110 triệu đồng (cả vốn ban đầu và lãi).

Câu 2

Tập nghiệm của bất phương trình \({\log _2}\left( {3x + 1} \right) < 2\)

Lời giải

Đáp án C

Câu 3

Trong các mệnh đề dưới đây, mệnh đề nào sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đạo hàm của hàm số \[y = \sqrt x + x\] tại điểm \[{x_0} = 4\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay