Quảng cáo
Trả lời:
a) Xét ∆OMN ta có MN < OM + ON (1) (Bất đẳng thức tam giác).
b) Vì A, M, N, B cùng thuộc đường tròn (O) nên OA = OM = ON = OB.
Ta có: OM + ON = OA + OB.
Lại có AB = OA + OB, do đó OM + ON < AB. (2)
Từ (1) và (2) suy ra MN < AB.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì AB là dây cung của đường tròn (O; R) nên OA = OB = R.
Mà AB = R nên OA = OB = AB = R.
Xét ∆OAB có OA = OB = AB = R nên ∆OAB là tam giác đều, suy ra
Lời giải

a) Vì AB là dây cung của đường kính (O; R) nên ta có OA = OB = R.
Khi đó, O nằm trên đường trung trực của AB.
Lại có M là trung điểm của AB nên M cũng nằm trên đường trung trực của AB.
Do đó OM là đường trung trực của đoạn thẳng AB.
b) Vì M là trung điểm của AB nên ta có
Vì OM là đường trung trực của đoạn thẳng AB nên OM ⊥ AB hay ∆OAM vuông tại M.
Theo định lí Pythagore ta có: OA2 = OM2 + AM2
Suy ra OM2 = OA2 – AM2 = 52 – 42 = 9.
Do đó OM = 3 cm.
Vậy khoảng cách từ điểm O đến đường thẳng AB là 3 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


