Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d qua M lần lượt tiếp xúc với (O) tại A, B. Biết Chứng minh AB = R.
Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d qua M lần lượt tiếp xúc với (O) tại A, B. Biết Chứng minh AB = R.
Quảng cáo
Trả lời:

Vì MA, MB là hai tiếp tuyến của đường tròn (O; R) nên OA = OB = R và OA ⊥ AM tại A, OB ⊥ BM tại B hay
Xét tứ giác OAMB có: (định lí tổng các góc của một tứ giác).
Suy ra
Nên
Xét tam giác OAB có OA = OB = R và nên là tam giác đều.
Do đó AB = OA = OB = R.
Vậy AB = R.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).
Do đó DA + EB = DC + EC hay AD + BE = DE.
b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của (tính chất hai tiếp tuyến cắt nhau).
Do đó (tính chất tia phân giác).
Lời giải
Kẻ OH ⊥ AB tại H và OH cắt BM tại N.
Xét ∆OAB có OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại A.
∆OAB cân tại A có đường cao OH nên OH đồng thời là đường phân giác của
Suy ra
Theo bài, nên
Xét ∆OAH vuông tại H, ta có: (tổng hai góc nhọn trong tam giác vuông)
Suy ra hay
Do đó MA ⊥ OA tại A, mà OA là bán kính của đường tròn (O) nên MA là tiếp tuyến của đường tròn (O).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


