Câu hỏi:

13/07/2024 7,201

Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d qua M lần lượt tiếp xúc với (O) tại A, B. Biết AMB^=120°.   Chứng minh AB = R.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d qua M lần lượt tiếp xúc với (O) tại A, B (ảnh 1)

Vì MA, MB là hai tiếp tuyến của đường tròn (O; R) nên OA = OB = R và OA AM tại A, OB BM tại B hay OAM^=90°;  OBM^=90°.

Xét tứ giác OAMB có: AOB^+OAM^+OBM^+AMB^=360°   (định lí tổng các góc của một tứ giác).

Suy ra AOB^=360°OAM^+OBM^+AMB^

Nên AOB^=360°90°+90°+120°=60°.

Xét tam giác OAB có OA = OB = R và AOB^=60°  nên là tam giác đều.

Do đó AB = OA = OB = R.

Vậy AB = R.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).

Do đó DA + EB = DC + EC hay AD + BE = DE.

b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của  COA^(tính chất hai tiếp tuyến cắt nhau).

Do đó COD^=12COA^  (tính chất tia phân giác).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của COB^  (tính chất hai tiếp tuyến cắt nhau).

Do đó  COE^=12COB^(tính chất tia phân giác).

Lời giải

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d đi qua M lần lượt tiếp xúc với (O) tại A, B (ảnh 2)

Gọi H, K và N lần lượt là hình chiếu của I lên MA, MA và AB.

Theo cách vẽ, ta có IH MA, IK MB, IN AB nên IHA^=IHM^=IKM^=ANI^=90°.

Xét ∆ANI (vuông tại N) và ∆AHI (vuông tại H) có:

AI là cạnh chung; NAI^=HAI^  (do AI là phân giác của MAB^).

Do đó ∆ANI = ∆AHI (cạnh huyền – góc nhọn).

Suy ra IN = IH (hai cạnh tương ứng). (1)

Vì MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M với A, B là các tiếp điểm nên MO là tia phân giác của AMB^  hay MI là tia phân giác của   HMK^.

Xét ∆MHI (vuông tại H) và ∆MKI (vuông tại K) có:

MI là cạnh chung và HMI^=KMI^  (do MI là tia phân giác của HMK^).

Do đó ∆MHI = ∆MKI (cạnh huyền – góc nhọn).

Suy ra IH = IK (hai cạnh tương ứng). (2)

Từ (1) và (2) suy ra IN = IH = IK.

Vậy điểm I cách đều ba đường thẳng MA, MB và AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP