Câu hỏi:

13/07/2024 8,479

Cho đường tròn (O) và dây AB. Điểm M nằm ngoài đường tròn (O) thỏa mãn điểm B nằm trong góc MAO và  MAB^=12AOB^. Chứng minh đường thẳng MA là tiếp tuyến của đường tròn (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kẻ OH AB tại H và OH cắt BM tại N.

Xét ∆OAB có OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại A.

∆OAB cân tại A có đường cao OH nên OH đồng thời là đường phân giác của AOB^.

Suy ra AOH^=12AOB^.

Theo bài,  MAB^=12AOB^ nên AOH^=MAB^.

Xét ∆OAH vuông tại H, ta có: AOH^+OAH^=90°   (tổng hai góc nhọn trong tam giác vuông)

Suy ra MAB^+OAH^=90°  hay OAM^=90°.

Do đó MA OA tại A, mà OA là bán kính của đường tròn (O) nên MA là tiếp tuyến của đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).

Do đó DA + EB = DC + EC hay AD + BE = DE.

b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của  COA^(tính chất hai tiếp tuyến cắt nhau).

Do đó COD^=12COA^  (tính chất tia phân giác).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của COB^  (tính chất hai tiếp tuyến cắt nhau).

Do đó  COE^=12COB^(tính chất tia phân giác).

Lời giải

Cho đường tròn (O) và điểm M nằm ngoài đường tròn. Hai đường thẳng c, d đi qua M lần lượt tiếp xúc với (O) tại A, B (ảnh 2)

Gọi H, K và N lần lượt là hình chiếu của I lên MA, MA và AB.

Theo cách vẽ, ta có IH MA, IK MB, IN AB nên IHA^=IHM^=IKM^=ANI^=90°.

Xét ∆ANI (vuông tại N) và ∆AHI (vuông tại H) có:

AI là cạnh chung; NAI^=HAI^  (do AI là phân giác của MAB^).

Do đó ∆ANI = ∆AHI (cạnh huyền – góc nhọn).

Suy ra IN = IH (hai cạnh tương ứng). (1)

Vì MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M với A, B là các tiếp điểm nên MO là tia phân giác của AMB^  hay MI là tia phân giác của   HMK^.

Xét ∆MHI (vuông tại H) và ∆MKI (vuông tại K) có:

MI là cạnh chung và HMI^=KMI^  (do MI là tia phân giác của HMK^).

Do đó ∆MHI = ∆MKI (cạnh huyền – góc nhọn).

Suy ra IH = IK (hai cạnh tương ứng). (2)

Từ (1) và (2) suy ra IN = IH = IK.

Vậy điểm I cách đều ba đường thẳng MA, MB và AB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP