Câu hỏi:

19/08/2025 278 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (hai đáy \(AB > CD\)). Gọi \(M,N\) lần lượt là trung điểm của \(SA,SB\).

a) Tìm giao điểm \(P\) của \(SC\) và mp\(\left( {ADN} \right)\).

b) Biết \(AN\) cắt \(DP\) tại \(I\). Chứng minh \(SI\,{\rm{//}}\,AB\). Tứ giác \(SABI\) là hình gì?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi \(E = BC \cap AD\) \( \Rightarrow \left( {SBC} \right) \cap \left( {ADN} \right) = NE\)

Khi đó \(P = SC \cap NE\) nên \(P = SC \cap \left( {ADN} \right)\).

b) HS tự chứng minh \(SI\,{\rm{//}}\,AB\,{\rm{//}}\,CD\). Tứ giác \(SABI\) là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {0;\pi } \right)\);
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\);
C. \(\left( { - 2\pi ; - \pi } \right)\);       

D. \(\left( { - \frac{{5\pi }}{2}; - \frac{{3\pi }}{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(D = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\);

B. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\);

C. \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\);

D. \(D = \emptyset \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP