Câu hỏi:
13/07/2024 16,939
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của một công ty (đơn vị: triệu đồng).
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Nhóm
Tần số
[10; 15)
[15; 20)
[20; 25)
[25; 30)
[30; 35)
[35; 40)
15
18
10
10
5
2
n = 60
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của một công ty (đơn vị: triệu đồng).
a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Nhóm |
Tần số |
[10; 15) [15; 20) [20; 25) [25; 30) [30; 35) [35; 40) |
15 18 10 10 5 2 |
|
n = 60 |
Quảng cáo
Trả lời:
a) Trong mẫu số liệu ghép nhóm ở Bảng 9, ta có: đầu mút trái của nhóm 1 là a1 = 10, đầu mút phải của nhóm 6 là a7 = 40.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a7 – a1 = 40 – 10 = 30 (triệu đồng).
b) Từ Bảng 9 ta có bảng sau:
Nhóm |
Tần số |
Tần số tích lũy |
[10; 15) [15; 20) [20; 25) [25; 30) [30; 35) [35; 40) |
15 18 10 10 5 2 |
15 33 43 53 58 60 |
|
n = 60 |
|
Số phần tử của mẫu là n = 60.
Ta có: . Suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15. Xét nhóm 1 là nhóm [10; 15) có s = 10; h = 5; n1 = 15.
Áp dụng công thức, ta có tứ phân vị thứ nhất là
(triệu đồng).
Ta có: mà 43 < 45 < 53. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45. Xét nhóm 4 là nhóm [25; 30) có t = 25; l = 5; n4 = 10 và nhóm 3 là nhóm [20; 25) có cf3 = 43.
Áp dụng công thức, ta có tứ phân vị thứ ba là
(triệu đồng).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
∆Q = Q3 – Q1 = 26 – 15 = 11 (triệu đồng).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đáp án đúng là: A
Trong mẫu số liệu ghép nhóm ở Bảng 8, ta có: đầu mút trái của nhóm 1 là a1 = 40, đầu mút phải của nhóm 5 là a6 = 90.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a6 – a1 = 90 – 40 = 50 (nghìn đồng).
Lời giải
Trong mẫu số liệu ghép nhóm ở Bảng 1, ta có: đầu mút trái của nhóm 1 là a1 = 40, đầu mút phải của nhóm 5 là a6 = 75.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
R = a6 – a1 = 75 – 40 = 35 (tạ/ha).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.