Cho đường tròn (J; 5 cm) và đường thẳng c. Gọi K là chân đường vuông góc vẽ từ J xuống c, d là độ dài của đoạn thẳng JK. Xác định vị trí tương đối của đường thẳng c và đường tròn (J; 5 cm) trong mỗi trường hợp sau:
a) d = 4 cm;
b) d = 5 cm;
c) d = 6 cm.
Cho đường tròn (J; 5 cm) và đường thẳng c. Gọi K là chân đường vuông góc vẽ từ J xuống c, d là độ dài của đoạn thẳng JK. Xác định vị trí tương đối của đường thẳng c và đường tròn (J; 5 cm) trong mỗi trường hợp sau:
a) d = 4 cm;
b) d = 5 cm;
c) d = 6 cm.
Quảng cáo
Trả lời:
a)

Ta có d = 4 cm, R = 5 cm.
Vì d < R nên đường thẳng c cắt đường tròn (J; 5 cm) tại hai điểm.
b)

Ta có d = 5 cm, R = 5 cm.
Vì d = R nên đường thẳng c tiếp xúc với đường tròn (J; 5 cm) tại điểm K.
c)

Ta có d = 6 cm, R = 5 cm.
Vì d > R nên đường thẳng c và đường tròn (J; 5 cm) không giao nhau.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có:
⦁ AE, AM là hai tiếp tuyến của (O) cắt nhau tại A nên AE = AM = 6 cm (tính chất hai tiếp tuyến cắt nhau).
⦁ BM, BP là hai tiếp tuyến của (O) cắt nhau tại B nên BM = BP = 3 cm (tính chất hai tiếp tuyến cắt nhau).
⦁ CP, CE là hai tiếp tuyến của (O) cắt nhau tại C nên CP = CE = 8 cm (tính chất hai tiếp tuyến cắt nhau).
Chu vi tam giác ABC là:
AB + BC + CA = AM + BM + BP + CP + CE + AE
= 6 + 3 + 3 + 8 + 8 + 6 = 34 (cm).
Lời giải
Xét ∆ABC có:
⦁ AB2 + BC2 = 92 + 122 = 225;
⦁ AC2 = 152 = 225.
Do đó AB2 + BC2 = AC2,
Theo định lí Pythagore đảo, ta có ∆ABC vuông tại B.
Suy ra AB ⊥ BC hay AB ⊥ OB.
Xét đường tròn (O) có AB ⊥ OB tại B thuộc đường tròn (O) nên AB là tiếp tuyến của đường tròn (O).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




