Ba góc của một tam giác tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo là
Ba góc của một tam giác tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo là
Quảng cáo
Trả lời:
Chọn D
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ sâu của mực nước là $9\,\,{\text{m}}$ thì $h = 9$.
Khi đó \[9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \]
\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \Leftrightarrow t = \frac{{6(k2\pi + \pi - 1)}}{\pi },\,\,k \in \mathbb{Z}\].
Vì $0 \leqslant t < 24$ nên $0 \leqslant \frac{{6(k2\pi + \pi - 1)}}{\pi } < 24 \Leftrightarrow 0 < k \leqslant 1$.
Mà \[k \in \mathbb{Z}\] nên \[k = 1 \Rightarrow t = \frac{{6(3\pi - 1)}}{\pi } \approx 16,09\,\,{\text{(m)}}\].
Vậy \[t \approx 16,09\,\,{\text{m}}\].
Câu 2
D. ${u_7} = {u_4}.\,{q^6}$.
Lời giải
Chọn A
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. ${u_{n + 1}} = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^{2(n - 1) + 3}}$.
D. ${u_{n + 1}} = {\left( {\frac{n}{{n + 1}}} \right)^{2n + 5}}$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. $\cot \alpha > 0$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
B. $x = \frac{\pi }{6} + k2\pi ,\,\,k \in \mathbb{Z}$.
D. $x = \frac{\pi }{6} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
