Tìm khẳng định đúng trong các khẳng định sau.
Tìm khẳng định đúng trong các khẳng định sau.
A. Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó nằm trong mặt phẳng đó.
B. Nếu hai mặt phẳng cùng song song với mặt phẳng thứ ba thì chúng song song với nhau.
D. Trong không gian, hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song với nhau.
Câu hỏi trong đề: Đề kiểm tra Giữa kì 1 Toán 11 CTST có đáp án !!
Quảng cáo
Trả lời:

Chọn A
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Độ sâu của mực nước là $9\,\,{\text{m}}$ thì $h = 9$.
Khi đó \[9 = 3\cos \left( {\frac{{\pi t}}{6} + 1} \right) + 12 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = - 1 \Leftrightarrow \cos \left( {\frac{{\pi t}}{6} + 1} \right) = \cos \pi \]
\[ \Leftrightarrow \frac{{\pi t}}{6} + 1 = \pi + k2\pi \Leftrightarrow t = \frac{{6(k2\pi + \pi - 1)}}{\pi },\,\,k \in \mathbb{Z}\].
Vì $0 \leqslant t < 24$ nên $0 \leqslant \frac{{6(k2\pi + \pi - 1)}}{\pi } < 24 \Leftrightarrow 0 < k \leqslant 1$.
Mà \[k \in \mathbb{Z}\] nên \[k = 1 \Rightarrow t = \frac{{6(3\pi - 1)}}{\pi } \approx 16,09\,\,{\text{(m)}}\].
Vậy \[t \approx 16,09\,\,{\text{m}}\].
Câu 2
D. ${u_7} = {u_4}.\,{q^6}$.
Lời giải
Chọn A
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. ${u_{n + 1}} = {\left( {\frac{{n - 1}}{{n + 1}}} \right)^{2(n - 1) + 3}}$.
D. ${u_{n + 1}} = {\left( {\frac{n}{{n + 1}}} \right)^{2n + 5}}$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. $\cot \alpha > 0$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
B. $x = \frac{\pi }{6} + k2\pi ,\,\,k \in \mathbb{Z}$.
D. $x = \frac{\pi }{6} + k\frac{\pi }{2},\,\,k \in \mathbb{Z}$.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.