Câu hỏi:

13/07/2024 584

Thầy Đông cho học sinh của mình chơi một trò chơi. Thầy có 3 hộp bi A, B và C lần lượt có 5, 12 và 16 viên bi. Luật của trò chơi như sau: ta lấy từ 2 hộp bắt kỳ một viên bi rồi bỏ vào hộp còn lại. Thầy yêu cầu qua 3 lượt bắc thì cuối cùng hộp A, B, C sẽ có lần lượt 7, 8 và 18 viên bi.

1. Điền tiếp vào bảng số lượng bi của mỗi hộp A, B, C sau các lượt bốc:

 

Hộp A

Hộp B

Hộp C

 

5

12

16

Lượt 1

4

11

16

Lượt 2

 

 

 

Lượt 3

 

 

 

Cuối cùng

7

8

18

 

2. Lần tiếp theo thầy Đông yêu cầu cuối cùng mỗi hộp phải có 11 viên bi. Sau nhiều lần thử, một bạn học sinh nhận xét rằng “Sau một lần chuyển thì số bi mỗi hộp khi chia cho 3 sẽ có dư khác nhau”. Hãy chứng minh rằng bạn học sinh này đúng và qua đó xét xem yêu cầu của thầy Đông có thực hiện được hay không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

Hộp A

Hộp B

Hộp C

 

5

12

16

Lượt 1

4

11

16

Lượt 2

6

10

17

Lượt 3

8

9

16

Cuối cùng

7

8

18

2. Tại thời điểm lúc đầu 5; 12; 16 thì 12 chia hết cho 3; 16 chia 3 dư 1 và 5 chia 3 dư 2.

Giả sử bạn học sinh đó nói đúng, tại một thời điểm bất kì nào đó ta có bộ ba số số viên bi trong các hộp A, B, C là a, b, c với a chia hết cho 3, b chia 3 dư 1 và c chia 3 dư 2. Ta xét 3 trường hợp:

+) TH1: a bớt 1, b bớt 1 và c thêm 2

Khi đó (a − 1) chia cho 3 dư 2, (b − 1) chia hết cho 3 và (c + 2) chia cho 3 dư 2. Do đó, bộ 3 số mới cũng đúng với nhận xét.

+) TH2: a bớt 1, c bớt 1 và b thêm 2.

Khi đó (a – 1) chia cho 3 dư 2, (b + 2) chia hết cho 3 và (c − 1) chia cho 3 dư 1.

+) TH3: b bớt 1, c bớt 1 và a thêm 2

Khi đó, (a + 1) chia cho 3 dư 2, (b − 1) chia hết cho 3 và (c − 1) chia cho 3 dư 1.

Do đó, bộ ba số mới cũng đúng với nhận xét

- Như vậy, ở tất cả các trường hợp thì đều có bộ 3 số mới chia cho 3 có số dư khác nhau.

Do vậy, bạn học sinh nhận xét đúng.

- Vì bạn học sinh đó nhận xét đúng nên yêu cầu cuối cùng của thầy Đông không thực hiện được vì khi cả 3 hộp có 11 viên bi thì số dư các hộp là không giống nhau.

Do vậy, yêu cầu cuối cùng của thầy Đông là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

    11×2+22×4+34×7+47×11+511×16+616×22+722×29=211×2+422×4+744×7+1177×11+161111×16+221616×22+292222×29=1112+1214+1417+17111+111116+116122+122129=11129=2829

Lời giải

Nếu lớp bớt đi 2 em tham gia cuộc thi thì số học sinh còn lại sẽ tăng thêm 2 em và nhiều hơn 12 số học sinh của lớp là 8 + 2 = 10 (học sinh)

Phân số chỉ số học sinh còn lại của lớp là 114=34  (số học sinh cả lớp)

Phân số chỉ 8 học sinh là 3412=14  (số học sinh cả lớp)

Vậy số học sinh cả lớp là 10 : 1 × 4 = 40 (học sinh).

Số học sinh tham gia cuộc thi Trạng Nguyên Nhỏ Tuổi là 40 : 4 + 2 = 12 (học sinh).

Đáp số: 12 học sinh.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay