Câu hỏi:

13/07/2024 183

Thầy Đông cho học sinh của mình chơi một trò chơi. Thầy có 3 hộp bi A, B và C lần lượt có 5, 12 và 16 viên bi. Luật của trò chơi như sau: ta lấy từ 2 hộp bắt kỳ một viên bi rồi bỏ vào hộp còn lại. Thầy yêu cầu qua 3 lượt bắc thì cuối cùng hộp A, B, C sẽ có lần lượt 7, 8 và 18 viên bi.

1. Điền tiếp vào bảng số lượng bi của mỗi hộp A, B, C sau các lượt bốc:

 

Hộp A

Hộp B

Hộp C

 

5

12

16

Lượt 1

4

11

16

Lượt 2

 

 

 

Lượt 3

 

 

 

Cuối cùng

7

8

18

 

2. Lần tiếp theo thầy Đông yêu cầu cuối cùng mỗi hộp phải có 11 viên bi. Sau nhiều lần thử, một bạn học sinh nhận xét rằng “Sau một lần chuyển thì số bi mỗi hộp khi chia cho 3 sẽ có dư khác nhau”. Hãy chứng minh rằng bạn học sinh này đúng và qua đó xét xem yêu cầu của thầy Đông có thực hiện được hay không?

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

Hộp A

Hộp B

Hộp C

 

5

12

16

Lượt 1

4

11

16

Lượt 2

6

10

17

Lượt 3

8

9

16

Cuối cùng

7

8

18

2. Tại thời điểm lúc đầu 5; 12; 16 thì 12 chia hết cho 3; 16 chia 3 dư 1 và 5 chia 3 dư 2.

Giả sử bạn học sinh đó nói đúng, tại một thời điểm bất kì nào đó ta có bộ ba số số viên bi trong các hộp A, B, C là a, b, c với a chia hết cho 3, b chia 3 dư 1 và c chia 3 dư 2. Ta xét 3 trường hợp:

+) TH1: a bớt 1, b bớt 1 và c thêm 2

Khi đó (a − 1) chia cho 3 dư 2, (b − 1) chia hết cho 3 và (c + 2) chia cho 3 dư 2. Do đó, bộ 3 số mới cũng đúng với nhận xét.

+) TH2: a bớt 1, c bớt 1 và b thêm 2.

Khi đó (a – 1) chia cho 3 dư 2, (b + 2) chia hết cho 3 và (c − 1) chia cho 3 dư 1.

+) TH3: b bớt 1, c bớt 1 và a thêm 2

Khi đó, (a + 1) chia cho 3 dư 2, (b − 1) chia hết cho 3 và (c − 1) chia cho 3 dư 1.

Do đó, bộ ba số mới cũng đúng với nhận xét

- Như vậy, ở tất cả các trường hợp thì đều có bộ 3 số mới chia cho 3 có số dư khác nhau.

Do vậy, bạn học sinh nhận xét đúng.

- Vì bạn học sinh đó nhận xét đúng nên yêu cầu cuối cùng của thầy Đông không thực hiện được vì khi cả 3 hộp có 11 viên bi thì số dư các hộp là không giống nhau.

Do vậy, yêu cầu cuối cùng của thầy Đông là sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính: 12+28+328+477+5176+6352+7638

Xem đáp án » 13/07/2024 1,049

Câu 2:

Lớp 5A cử một số bạn tham gia cuộc thi “Trạng Nguyên Nhỏ Tuổi”. Số học sinh còn lại của lớp nhiều hơn 12  số học sinh cả lớp là 8 em. Nếu số em tham gia cuộc thi bớt đi 2 em thì số học sinh tham gia bằng 14  số học sinh của cả lớp. Tính số em học sinh tham gia cuộc thi “Trạng Nguyên Nhỏ Tuổi”.

Xem đáp án » 13/07/2024 887

Câu 3:

Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng là 20 m. Nếu ta bớt chiều dài đi 27  chiều dài và bớt chiều rộng đi 16  chiều rộng thì mảnh đất này trở thành hình vuông. Tính diện tích của mảnh đất đó

Xem đáp án » 13/07/2024 703

Câu 4:

Cho dãy số: 1; 1; 3; 7; 13; 21;... số hạng tiếp theo là bao nhiêu?

Xem đáp án » 13/07/2024 444

Câu 5:

Một ô tô đi từ Thanh Hóa lúc 7 giờ và dự kiến đến Hà Nội lúc 11 giờ 30 phút với vận tốc 64km/giờ. Nhưng thực tế đến 9 giờ 30 phút ô tô đã đi được 150 km.

Hỏi:

a) Từ 7 giờ đến 9 giờ 30 phút, ô tô đã đi với vận tốc bao nhiêu km/giờ?

b) Để đến B đúng dự định, ô tô phải đi đoạn đường còn lại với vận tốc bao nhiêu km/giờ?

Xem đáp án » 13/07/2024 423

Câu 6:

Cho hình thang ABCD vuông ở B, canh AD = 6 cm; BC = 12 cm; AB = 8 cm. Trên cạnh DC lấy điểm E sao cho BE chia hình thang thành hai phần có diện tích bằng nhau. Tính tỉ số DEEC .

Xem đáp án » 13/07/2024 372

Câu 7:

Cho hình bình hành ABCD. Trên cạnh AB lấy điểm P, trên cạnh DC lấy điểm Q sao cho AP = DQ. H và K là hai điểm nằm trên BC và AD. Tính diện tích tứ giác KPHQ, biết diện tích hình bình hành ABCD là 48 cm2.

Cho hình bình hành ABCD. Trên cạnh AB lấy điểm P, trên cạnh DC lấy điểm Q sao cho AP = DQ. (ảnh 1)

Xem đáp án » 13/07/2024 302

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store