Câu hỏi:

19/06/2024 138

Trong không gian với hệ tọa độ \[Oxyz,\] cho hình thang cân \[ABCD\] có các đáy lần lượt là \[AB,\,\,CD.\] Biết \(A\left( {3\,;\,\,1\,;\,\, - 2} \right),\,\,B\left( { - 1\,;\,\,3\,;\,\,2} \right),\,\,C\left( { - 6\,;\,\,3\,;\,\,6} \right)\) và \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) với \(a,\,\,b,\,\,c \in \mathbb{R}.\) Tính \(T = a + b + c.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cách 1: Ta có \[\overrightarrow {AB}  = \left( { - 4\,;\,\,2\,;\,\,4} \right);\,\,\overrightarrow {CD}  = \left( {a + 6\,;\,\,b - 3\,;\,\,c - 6} \right)\].

Do \[ABCD\] là hình thang cân nên hay \(\frac{{a + 6}}{{ - 2}} = \frac{{b - 3}}{1} = \frac{{c - 6}}{2} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{b = \frac{{ - a}}{2}}\\{c =  - a}\end{array}} \right.\).

Vậy \(D\left( {a\,;\,\,\frac{{ - a}}{2}\,;\,\, - a} \right).\)

Lại có \(AC = BD \Leftrightarrow A{C^2} = B{D^2} \Leftrightarrow {\left( { - 9} \right)^2} + {2^2} + {8^2} = {\left( {a + 1} \right)^2} + {\left( {\frac{a}{2} + 3} \right)^2} + {\left( {a + 2} \right)^2}\)

\( \Leftrightarrow {a^2} + 4a - 60 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 6}\\{a =  - 10}\end{array}} \right.\).

Với \(a =  - 10 \Rightarrow D\left( { - 10\,;\,\,5\,;\,\,10} \right).\) Kiểm tra thấy: \(\overrightarrow {AB}  = \overrightarrow {CD} .\)

Vớí \(a = 6 \Rightarrow D\left( {6\,;\,\, - 3\,;\,\, - 6} \right).\)

Kiểm tra thấy: \(\left( { - 3} \right) \cdot \overrightarrow {AB}  = \overrightarrow {CD} .\) Do đó \(T = a + b + c = 6 - 3 - 6 =  - 3.\)

Cách 2: Ta có \[\overrightarrow {AB}  = \left( { - 4\,;\,\,2\,;\,\,4} \right);\,\,\overrightarrow {CD}  = \left( {a + 6\,;\,\,b - 3\,;\,\,c - 6} \right)\]

Do \[ABCD\] là hình thang cân nên \(\overrightarrow {AB} \,;\,\,\overrightarrow {CD} \) ngược hướng hay

\(\frac{{a + 6}}{{ - 2}} = \frac{{b - 3}}{1} = \frac{{c - 6}}{2} < 0\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = \frac{{ - a}}{2}}\\{c =  - a}\\{a >  - 6}\end{array}} \right.\).

Do đó \(D\left( {a\,;\,\,\frac{{ - a}}{2}\,;\,\, - a} \right)\) với \(a >  - 6.\)

Lại có \(AC = BD \Leftrightarrow A{C^2} = B{D^2} \Leftrightarrow {\left( { - 9} \right)^2} + {2^2} + {8^2} = {\left( {a + 1} \right)^2} + {\left( {\frac{a}{2} + 3} \right)^2} + {\left( {a + 2} \right)^2}\)

\( \Leftrightarrow {a^2} + 4a - 60 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{a = 6}\\{a =  - 10\,\,(\;{\rm{L}})}\end{array}} \right.\)

Với \(a = 6 \Rightarrow D\left( {6\,;\,\, - 3\,;\,\, - 6} \right).\)

Do đó, \(T = a + b + c = 6 - 3 - 6 =  - 3.\)

Cách 3: Viết phương trình mặt phẳng trung trực của đoạn thẳng \[AB\].

Gọi mặt phẳng \((\alpha )\) là mặt phẳng trung trực của đoạn thẳng \[AB\].

Khi đó, mặt phẳng \((\alpha )\) đi qua trung điểm \(I\left( {1\,;\,\,2\,;\,\,0} \right)\) của đoạn thẳng AB và có một vectơ pháp tuyến \(\overrightarrow n  = \frac{1}{2}\overrightarrow {AB}  = \left( { - 2\,;\,\,1\,;\,\,2} \right).\)

Suy ra phương trình của mặt phẳng \((\alpha )\) là: \((\alpha ): - 2x + y + 2z = 0.\)

Vì \[C,\,\,D\] đối xứng nhau qua mặt phẳng \((\alpha )\) nên \(D\left( {6\,;\,\, - 3\,;\,\, - 6} \right)\).

Do đó \[a = 6\,;\,\,b =  - 3\,;\,\,c =  - 6 \Rightarrow T = a + b + c =  - 3\]. Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Tia tử ngoại có có tác dụng diệt khuẩn do vậy nó có thể diệt được 99% vi khuẩn.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nước ngọt là vấn đề quan trọng hàng đầu đối với việc sử dụng hợp lí đất đai ở Đồng bằng sông Cửu Long vì 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay