Câu hỏi:
19/06/2024 275Quảng cáo
Trả lời:
Cách 1:
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{\left( {SAB} \right) \bot \left( {ABCD} \right)}\\{\left( {SAB} \right) \cap \left( {ABCD} \right)}\\{SH \bot AB\,;\,\,SH \subset \left( {SAB} \right)}\end{array} \Rightarrow SH \bot \left( {ABCD} \right)} \right..\)
Kẻ \(HK \bot CD\,\,\left( {K \in CD} \right)\).
Ta có \(\left\{ \begin{array}{l}CD \bot HK\\CD \bot SH\end{array} \right.\)\( \Rightarrow CD \bot (SHK) \Rightarrow CD \bot SK.\)
Gọi \(I\) là điểm đối xứng \(H\) qua \(K.\)
Dễ dàng chứng minh \(\Delta CKH = \Delta DKI\,\,(c.g.c)\) suy ra \(\widehat {CKH} = \widehat {DKI}\) (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên \[DI\,{\rm{//}}\,HC\] suy ra \[HC\,{\rm{//}}\,\left( {SDI} \right)\]
\[ \Rightarrow d\left( {HC;\,\,SD} \right) = d\left( {HC;\,\,\left( {SID} \right)} \right) = d\left( {H;\,\,\left( {SID} \right)} \right).\]
Trong \(\left( {ABCD} \right)\), kẻ \(HE \bot DI\,\,\left( {E \in DI} \right)\), trong \(\left( {SHE} \right)\) kẻ \(HF \bot SE\,\,\left( {F \in SE} \right).\)
Ta có \(\left\{ \begin{array}{l}DI \bot HE\\DI \bot SH\end{array} \right. \Rightarrow DI \bot \left( {SHE} \right) \Rightarrow DI \bot HF.\)
\[\left\{ \begin{array}{l}HF \bot SE\\HF \bot DI\end{array} \right. \Rightarrow HF \bot \left( {SCD} \right)\]
\[ \Rightarrow d\left( {H;\,\,\left( {SID} \right)} \right) = HF = d\left( {HC;\,\,SD} \right)\].
+) Tính \(HE\):
• Xét \(\Delta DKI\) vuông tại \(K\) có \(\sin I = \frac{{DK}}{{DI}} = \frac{a}{{\sqrt {{a^2} + {{\left( {3a} \right)}^2}} }} = \frac{1}{{\sqrt {10} }}.\)
• Xét \(\Delta HIE\) vuông tại \(E\) có \[HE = HI \cdot \sin I = 6a \cdot \frac{1}{{\sqrt {10} }} = \frac{{3a\sqrt {10} }}{5}.\]
+) Tính \(SH\):
Khi đó ta có \[\left\{ {\begin{array}{*{20}{l}}{\left( {SCD} \right) \bot \left( {ABCD} \right) = CD}\\{HK \subset \left( {ABCD} \right),\,\,HK \bot CD}\\{SK \bot \left( {SCD} \right)\,;\,\,SK \bot CD}\end{array}} \right.\]
\[ \Rightarrow \widehat {\left( {\left( {SCD} \right);\,\,\left( {ABCD} \right)} \right)} = \widehat {\left( {SK;\,\,HK} \right)} = \widehat {SKH} = 45^\circ \].
Suy ra \(\Delta SKH\) vuông cân tại \(H \Rightarrow SH = HK = AD = 3a.\)
+) Tính \(HF\):
Xét tam giác \[SHE\] vuông tại \(H\) có \(HF\) là đường cao nên
\(\frac{1}{{H{F^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{E^2}}} = \frac{1}{{9{a^2}}} + \frac{1}{{\frac{{18}}{5}{a^2}}} = \frac{7}{{18{a^2}}} \Rightarrow HF = \frac{{3a\sqrt {14} }}{7}.\)
Vậy \[{\rm{d}}\left( {SD\,;\,\,CH} \right) = \frac{{3\sqrt {14} a}}{7}{\rm{.}}\] Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)
Bảng biến thiên:
\(x\) |
0 |
\(\frac{3}{2}\) |
4 |
\(t'\left( x \right)\) |
\( - \) |
0 + |
|
\(t\left( x \right)\) |
\(\frac{{11}}{{15}}\) |
|
\(\frac{{\sqrt 5 }}{3}\) |
|
|
\(\frac{2}{3}\) |
|
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.
Lời giải
Tia tử ngoại có có tác dụng diệt khuẩn do vậy nó có thể diệt được 99% vi khuẩn.
Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận