Câu hỏi:

19/06/2024 2,219 Lưu

Cho hình lập phương \(ABCD \cdot A'B'C'D'\) có độ dài cạnh bằng 1. Gọi \[M,\,\,N,\,\,P,\,\,Q\] lần lượt là trung điểm của \(AB,\,\,BC,\,\,C'D',\,\,DD'.\) Gọi thể tích khối tứ diện \[MNPQ\] là phân số tối giản \(\frac{a}{b}\), với \(a,\,\,b \in {\mathbb{N}^*}.\) Tính \(a + b.\)

A. 9

B. 25

C. 13

D. 11

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Thiết lập hệ tọa độ \[Oxyz\] như hình vẽ, gốc \(O \equiv A'\,;\,Ox \equiv A'B'\,\,;\,Oy \equiv AA'\,;\,Oz \equiv A'D'.\)

Khi đó \(A'\left( {0\,;\,\,0\,;\,\,0} \right),\,\,A\left( {0\,;\,\,1\,;\,\,0} \right),\,\,B'\left( {1\,;\,\,0\,;\,\,0} \right),D'\left( {0\,;\,\,0\,;\,\,1} \right).\)

Vì \[M,\,\,N,\,\,P,\,\,Q\] lần lượt là trung điểm của \(AB,\,\,BC,\,\,C'D',\,\,DD'\) nên

\(M\left( {1\,;\,\,\frac{1}{2}\,;\,\,0} \right),\,\,N\left( {1\,;\,\,1\,;\,\,\frac{1}{2}} \right),\,\,Q\left( {0\,;\,\,\frac{1}{2}\,;\,\,1} \right),\,\,P\left( {\frac{1}{2}\,;\,\,0\,;\,\,1} \right).\)

Ta có \[\overrightarrow {MN}  = \left( {\frac{1}{2}\,;\,\,0\,\,;\,\,\frac{1}{2}} \right),\,\,\overrightarrow {MP}  = \left( { - \frac{1}{2}\,\,;\,\, - \frac{1}{2}\,\,;\,\,1} \right),\,\,\overrightarrow {MQ}  = \left( {0\,\,;\,\, - 1\,\,;\,\,1} \right).\]

\[ \Rightarrow \left[ {\overrightarrow {MN} \,,\,\,\overrightarrow {MP} } \right] = \left( {\frac{1}{4}\,;\,\, - \frac{3}{4}\,;\,\, - \frac{1}{4}} \right) \Rightarrow \left[ {\overrightarrow {MN} \,,\,\,\overrightarrow {MP} } \right] \cdot \overrightarrow {MQ}  = \frac{1}{2}\].

Suy ra \({V_{MNPQ}} = \frac{1}{6}\left| {\left[ {\overrightarrow {MN} \,,\,\,\overrightarrow {MP} } \right] \cdot \overrightarrow {MQ} } \right| = \frac{1}{{12}} \Rightarrow a = 1\,;\,\,b = 12 \Rightarrow a + b = 13.\) Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Gọi vị trí thấp nhất của ống bương là là vị trí của máng nước (như hình vẽ).

Media VietJack

Tung độ của điểm \[M\] là \({y_M} = 11 - 6,5 = 4,5\)

\( \Rightarrow \sin \widehat {xOM} = \frac{{{y_M}}}{{OM}} = \frac{{4,5}}{5} = 0,9 \Rightarrow \widehat {xOM} \approx 64^\circ \).

Ta có \(\widehat {TOM} = \widehat {TOx} + \widehat {xOM} = 90^\circ  + 64^\circ  = 154^\circ .\)

Vì thời gian cọn nước thực hiện 1 vòng quay là 3 phút nên thời gian ống bương di chuyển từ \(T\)đến \(M\) là \(\frac{{3.154}}{{360}} = \frac{{77}}{{60}}\) (phút). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP