Câu hỏi:

19/08/2025 684 Lưu

Cho hàm số \(y = {x^3} - 8{x^2} + 8x\) có đồ thị \(\left( C \right)\) và hàm số \(y = {x^2} + \left( {8 - a} \right)x - b\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) có đồ thị \(\left( P \right)\). Biết đồ thị hàm số \(\left( C \right)\) cắt \(\left( P \right)\) tại ba điểm có hoành độ nằm trong \(\left[ { - 1\,;\,5} \right].\) Khi \(a\) đạt giá trị nhỏ nhất thì tích \[ab\] bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Phương trình hoành độ giao điểm là:

\({x^3} - 8{x^2} + 8x = {x^2} + \left( {8 - a} \right)x - b \Leftrightarrow {x^3} - 9{x^2} + ax + b = 0\,\,\,(1)\)

Khi đó phương trình (1) có ba nghiệm nằm trong \(\left[ { - 1\,;\,\,5} \right]\).

Đặt \(f(x) = {x^3} - 9{x^2} + ax + b\) suy ra \(f'\left( x \right) = 3{x^2} - 18x + a.\)

Để phương trình (1) có ba nghiệm nằm trong \(\left[ { - 1\,;\,\,5} \right]\) thì \(f'\left( x \right) = 3{x^2} - 18x + a = 0\) có hai nghiệm phân biệt thuộc \(\left[ { - 1\,;\,\,5} \right]\)\( \Leftrightarrow a =  - 3{x^2} + 18x\) có hai nghiệm phân biệt thuộc \(\left[ { - 1\,;\,\,5} \right]\).

Xét hàm số \(g\left( x \right) =  - 3{x^2} + 18x\) suy ra \(g'\left( x \right) =  - 6x + 18\), ta có \(g'\left( x \right) = 0 \Leftrightarrow x = 3.\)

Bảng biến thiên của \(y = g\left( x \right)\).

Media VietJack

Từ BBT, ta có \(15 \le a < 27\) suy ra giá trị nhỏ nhất của \(a\) bằng 15 khi \(x = 5\), khi đó \(b = 25.\)

Vậy tích \(ab = 375.\)

Đáp án: 375.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. nước ngọt rất cần thiết cho phát triển nuôi trồng thủy sản.
B. đất bị nhiễm phèn, nhiễm mặn, cần nước ngọt để cải tạo. 
C. thiếu nước ngọt cho đời sống sinh hoạt và sản xuất. 
D. thiếu nước ngọt cho sản xuất nông nghiệp, công nghiệp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP