Câu hỏi:
13/07/2024 531
Cho hàm số \(y = {x^3} - 8{x^2} + 8x\) có đồ thị \(\left( C \right)\) và hàm số \(y = {x^2} + \left( {8 - a} \right)x - b\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) có đồ thị \(\left( P \right)\). Biết đồ thị hàm số \(\left( C \right)\) cắt \(\left( P \right)\) tại ba điểm có hoành độ nằm trong \(\left[ { - 1\,;\,5} \right].\) Khi \(a\) đạt giá trị nhỏ nhất thì tích \[ab\] bằng
Quảng cáo
Trả lời:
Phương trình hoành độ giao điểm là:
\({x^3} - 8{x^2} + 8x = {x^2} + \left( {8 - a} \right)x - b \Leftrightarrow {x^3} - 9{x^2} + ax + b = 0\,\,\,(1)\)
Khi đó phương trình (1) có ba nghiệm nằm trong \(\left[ { - 1\,;\,\,5} \right]\).
Đặt \(f(x) = {x^3} - 9{x^2} + ax + b\) suy ra \(f'\left( x \right) = 3{x^2} - 18x + a.\)
Để phương trình (1) có ba nghiệm nằm trong \(\left[ { - 1\,;\,\,5} \right]\) thì \(f'\left( x \right) = 3{x^2} - 18x + a = 0\) có hai nghiệm phân biệt thuộc \(\left[ { - 1\,;\,\,5} \right]\)\( \Leftrightarrow a = - 3{x^2} + 18x\) có hai nghiệm phân biệt thuộc \(\left[ { - 1\,;\,\,5} \right]\).
Xét hàm số \(g\left( x \right) = - 3{x^2} + 18x\) suy ra \(g'\left( x \right) = - 6x + 18\), ta có \(g'\left( x \right) = 0 \Leftrightarrow x = 3.\)
Bảng biến thiên của \(y = g\left( x \right)\).
Từ BBT, ta có \(15 \le a < 27\) suy ra giá trị nhỏ nhất của \(a\) bằng 15 khi \(x = 5\), khi đó \(b = 25.\)
Vậy tích \(ab = 375.\)
Đáp án: 375.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)
Bảng biến thiên:
\(x\) |
0 |
\(\frac{3}{2}\) |
4 |
\(t'\left( x \right)\) |
\( - \) |
0 + |
|
\(t\left( x \right)\) |
\(\frac{{11}}{{15}}\) |
|
\(\frac{{\sqrt 5 }}{3}\) |
|
|
\(\frac{2}{3}\) |
|
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.
Lời giải
Tốc độ truyền bệnh là \(f'\left( t \right) = 90t - 3{t^2} = 675 - 3{\left( {t - 15} \right)^2} \le 675\)
Vậy tốc độ truyền bệnh lớn nhất khi \(t = 15\), tức là vào ngày thứ 15. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.