Câu hỏi:

11/07/2024 1,644 Lưu

Bác Nam muốn uốn tấm tôn phẳng có dạng hình chữ nhật với bề ngang 40cm thành một rãnh dẫn nước bằng cách chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông sao cho độ cao hai thành rãnh bằng nhau (hình bên). Để đảm bảo kĩ thuật, diện tích mặt cắt ngang của rãnh dẫn nước phải lớn lớn hoặc bằng 150cm2 Bác Nam cần làm rãnh dẫn nước có độ cao ít nhất là bao nhiêu cm?
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khi chia tấm tôn đó thành ba phần rồi gấp hai bên lại theo một góc vuông như hình vẽ thì mặt cắt ngang là hình chữ nhật có hai kích thước \(x(\;{\rm{cm}})\) và \(40 - 2x(\;{\rm{cm}}).\)

Khi đó diện tích mặt cắt ngang là \(\left( {40 - 2x} \right)x\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right).\)

Ta thấy: Diện tích mặt cắt ngang của rãnh dẫn nước lớn hơn hoặc bằng \(150\;\,\,{\rm{c}}{{\rm{m}}^2}\) khi và chỉ khi

\(\left( {40 - 2x} \right)x \ge 150 \Leftrightarrow  - 2{x^2} + 40x - 150 \ge 0.{\rm{ }}\)

Tam thức \(f(x) =  - 2{x^2} + 40x - 150\) có hai nghiệm \({x_1} = 5,{x_2} = 15\) và hệ số \(a =  - 2 < 0.\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của \(x\) sao cho tam thức \(f\left( x \right)\) mang dấu "+" là khoảng \(\left( {5\,;\,\,15} \right).\)

Do đó tập nghiệm của bất phương trình \( - 2{x^2} + 40x - 150 \ge 0\) là đoạn \[\left[ {5\,;\,\,15} \right].\]

Vậy rãnh dẫn nước phải có độ cao ít nhất là \(5\,\;{\rm{cm}}.\)

Đáp án: 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP