Câu hỏi:
11/07/2024 209
Cho hàm số \(y = \frac{{3 - x}}{{x + 1}}\) có đồ thị \(\left( C \right)\) và đường thẳng \(\Delta :y = - 4x + m.\) Tổng tất cả các giá trị của \(m\) thỏa mãn \(\Delta \) là tiếp tuyến của \(\left( C \right)\) bằng
Quảng cáo
Trả lời:
Ta có \(y' = f'\left( x \right) = \frac{{ - 4}}{{{{(x + 1)}^2}}}.\)
Phương trình tiếp tuyến của \((C)\) tại điểm \(M\left( {{x_0};{y_0}} \right) \in (C)\) có dạng \[y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}.\]
Đường thẳng \(\Delta :y = - 4x + m\) là tiếp tuyến của \((C)\) suy ra \(f'\left( {{x_0}} \right) = - 4 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{x_0} = 0}\\{{x_0} = - 2}\end{array}} \right..\)
• Với \({x_0} = 0\) ta có phương trình tiếp tuyến là \(y = - 4\left( {x - 0} \right) + 3 \Leftrightarrow y = - 4x + 3.\)
• Với \({x_0} = - 2\),ta có phương trình tiếp tuyến là \(y = - 4\left( {x + 2} \right) - 5 \Leftrightarrow y = - 4x - 13.\)
Vậy có hai giá trị \(m\) thỏa mãn \(\Delta \) là tiếp tuyến của \((C)\) là \(m = 3;m = - 13.\)
Suy ra tổng các giá trị \(m\) là \[ - 10\].
Đáp án: −10.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)
Bảng biến thiên:
\(x\) |
0 |
\(\frac{3}{2}\) |
4 |
\(t'\left( x \right)\) |
\( - \) |
0 + |
|
\(t\left( x \right)\) |
\(\frac{{11}}{{15}}\) |
|
\(\frac{{\sqrt 5 }}{3}\) |
|
|
\(\frac{2}{3}\) |
|
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.
Lời giải
Tốc độ truyền bệnh là \(f'\left( t \right) = 90t - 3{t^2} = 675 - 3{\left( {t - 15} \right)^2} \le 675\)
Vậy tốc độ truyền bệnh lớn nhất khi \(t = 15\), tức là vào ngày thứ 15. Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.