Câu hỏi:

13/07/2024 652 Lưu

Media VietJack
Một viên gạch hoa hình vuông cạnh 40cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình v bên). Diện tích mỗi cánh hoa của viên gạch bằng bao nhiêu cm2?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \[10\,\,cm = 1\,\,dm)\], các cánh hoa tạo bởi các đường parabol có phương trình

\(y = \frac{{{x^2}}}{2},\,\,y =  - \frac{{{x^2}}}{2},\,\,x =  - \frac{{{y^2}}}{2},\,\,x = \frac{{{y^2}}}{2}.\)

Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số \(y = \frac{{{x^2}}}{2},\,\,y = \sqrt {2x} \) và hai đường thẳng \(x = 0\,,\,\,x = 2.\)

Do đó diện tích một cánh hoa bằng

\(\int\limits_0^2 {\left( {\sqrt {2x}  - \frac{{{x^2}}}{2}} \right)dx}  = \left. {\left[ {\frac{{2\sqrt 2 }}{3}\sqrt {{{\left( {2x} \right)}^3}}  - \frac{{{x^3}}}{6}} \right]} \right|_0^2 = \frac{4}{3}\,\,\left( {{\rm{d}}{{\rm{m}}^2}} \right) = \frac{{400}}{3}\,\,\left( {\;{\rm{c}}{{\rm{m}}^2}} \right){\rm{. }}\)

Đáp án: \[\frac{{400}}{3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP