Câu hỏi:

13/07/2024 133 Lưu

Cho số phức \(z\) thỏa mãn \(\left( {z - 2 + i} \right)\left( {\bar z - 2 - i} \right) = 25.\) Biết tập hợp các điểm \(M\) biểu diễn số phức \(w = 2\bar z - 2 + 3i\) là đường tròn tâm \[I\left( {a;\,\,b} \right)\] và bán kính c. Giá trị của \(a + b + c\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) và \(w = x + yi\,\,\left( {x,\,y \in \mathbb{R}} \right)\)

Ta có \(\left( {z - 2 + i} \right)\left( {\bar z - 2 - i} \right) = 25\)

\( \Leftrightarrow \left[ {a - 2 + \left( {b + 1} \right)i} \right]\left[ {a - 2 - \left( {b + 1} \right)i} \right] = 25 \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b + 1} \right)^2} = 25\).

Theo giả thiết: \[{\rm{w}} = 2\bar z - 2 + 3i \Leftrightarrow x + yi = 2\left( {a - bi} \right) - 2 + 3i\]

\( \Leftrightarrow x + yi = 2a - 2 + \left( {3 - 2b} \right)i \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2a - 2}\\{y = 3 - 2b}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{{x + 2}}{2}}\\{b = \frac{{3 - y}}{2}}\end{array}} \right.} \right.\).

Thay (2) vào (1) ta được \({\left( {\frac{{x + 2}}{2} - 2} \right)^2} + {\left( {\frac{{3 - y}}{2} + 1} \right)^2} = 25 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 5} \right)^2} = 100.\)

Suy ra, tập hợp điểm biểu diễn của số phức \[w\] là đường tròn tâm \(I\left( {2\,;\,\,5} \right)\) và bán kính \(R = 10.\)

Vậy \(a + b + c = 17.\)

Đáp án: 17.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP