Câu hỏi:

13/07/2024 138

Trên tập hợp số phức, xét phương trình \({z^2} - 2mz + 2{m^2} - 2m = 0\), với \(m\) là tham số thực. Có bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 10\,;\,\,10} \right)\) để phương trình có hai nghiệm phân biệt \({z_1},{z_2}\) thỏa mãn \(\left| {{z_1} - 2} \right| = \left| {{z_2} - 2} \right|\)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(w = z - 2\), ta được phương trình \({\left( {w + 2} \right)^2} - 2m\left( {w + 2} \right) + 2{m^2} - 2m = 0\)

\( \Leftrightarrow {w^2} - (2m - 4)w + 2{m^2} - 6m + 4 = 0\).

Khi đó bài toán trở thành tìm \(m\) để phương trình (1) có hai nghiệm phân biệt \({w_1},{w_2}\) thỏa mãn \(\left| {{w_1}} \right| = \left| {{w_2}} \right|.\)

Xét phương trình (1) có \(\Delta ' = {\left( {m - 2} \right)^2} - 2{m^2} + 6m - 4 =  - {m^2} + 2m.\)

• TH1: \(\Delta ' > 0 \Leftrightarrow m \in \left( {0\,;\,\,2} \right).\) Mà \(m \in \mathbb{Z}\) nên \(m = 1.\)

Thay vào phương trình ta được \({w^2} + 2w = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{w = 0}\\{w =  - 2}\end{array}} \right.\) không thỏa mãn yêu cầu đề bài.

• TH2: \(\Delta ' < 0 \Leftrightarrow m \in \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right).\)

Khi đó phương trình luôn có hai nghiệm phức phân biệt không phải số thực, hai nghiệm này là hai số phức liên hợp nên mô-đun của chúng luôn bằng nhau.

Kết hợp với điều kiện \(m\) là số nguyên và \(m \in \left( { - 10\,;\,\,10} \right)\).

Suy ra \(m \in \left\{ { - 9\,;\,\, - 8\,;\,\, \ldots \,;\,\, - 1} \right\} \cup \left\{ {3\,;\,\,4\,;\,\, \ldots \,;\,\,9} \right\}.\)

Vậy có 16 giá trị của \(m\) thỏa mãn. Đáp án: 6.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)

Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:

\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)

\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}}  = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)

Bảng biến thiên:

\(x\)

 0

\(\frac{3}{2}\)

4

\(t'\left( x \right)\)

\( - \)

0                        +

 

\(t\left( x \right)\)

  \(\frac{{11}}{{15}}\)  

Media VietJack

 

\(\frac{{\sqrt 5 }}{3}\)

Media VietJack

 

 

\(\frac{2}{3}\)

 

Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.

Lời giải

Tia tử ngoại có có tác dụng diệt khuẩn do vậy nó có thể diệt được 99% vi khuẩn.

Chọn B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Nước ngọt là vấn đề quan trọng hàng đầu đối với việc sử dụng hợp lí đất đai ở Đồng bằng sông Cửu Long vì 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay