Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn đồng thời \({2^x} + y \le {\log _2}(x - y)\) và \[x,\,\,y\] thuộc đoạn \(\left[ { - 2\,;\,\,10} \right]\)?
                                    
                                                                                                                        Có bao nhiêu cặp số nguyên \(\left( {x\,;\,\,y} \right)\) thỏa mãn đồng thời \({2^x} + y \le {\log _2}(x - y)\) và \[x,\,\,y\] thuộc đoạn \(\left[ { - 2\,;\,\,10} \right]\)?
Quảng cáo
Trả lời:
Ta có \({2^x} + y \le {\log _2}\left( {x - y} \right)\)
\( \Leftrightarrow {2^x} + x \le {\log _2}\left( {x - y} \right) \Leftrightarrow {2^x} + x \le {\log _2}\left( {x - y} \right) + {2^{{{\log }_2}\left( {x - y} \right)}}\)
• Xét hàm số \(f(t) = {2^t} + t\) có \(f'\left( t \right) = {2^t}\ln 2 + 1 > 0,\,\,\forall t \in \mathbb{R}.\)
Hàm số đồng biến trên \(\mathbb{R}\), do đó: \((*) \Leftrightarrow x \le {\log _2}\left( {x - y} \right) \Leftrightarrow {2^x} \le x - y \Leftrightarrow y \le x - {2^x}\,\,(**)\)
• Xét hàm số \(g(x) = x - {2^x}\) trên đoạn \(\left[ { - 2\,;\,\,10} \right]\).
Ta có: \(g'\left( x \right) = 1 - {2^x}\ln 2\) và \(g'\left( x \right) = 0 \Leftrightarrow x = {\log _2}\left( {{{\log }_2}e} \right)\)
Bảng biến thiên

Kết hợp \((**)\) và bảng biên thiên ta có: \( - 2 \le y \le {\log _2}\left( {\frac{{{{\log }_2}e}}{e}} \right)\).
Do \(y \in \mathbb{Z}\) nên \(y = - 2\) hoặc \(y = - 1\).
• Với \(y = - 2\) ta có: \(g\left( x \right) \ge - 2.\) Do \(x \in \mathbb{Z}\) nên suy ra \(x \in \left\{ { - 1\,;\,\,0\,;\,\,1\,;\,\,2} \right\}.\)
Trường hợp này có bốn cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn.
• Với \(y = - 1\) ta có: \(g\left( x \right) \ge - 1.\) Do \(x \in \mathbb{Z}\) nên suy ra \(x \in \left\{ {0\,;\,\,1} \right\}.\)
Trường hợp này có hai cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn.
Vậy có tất cả 6 cặp số \(\left( {x\,;\,\,y} \right)\) thỏa mãn yêu cầu bài toán.
Đáp án: 6.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
 - Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
 - Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
 - Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Đặt \(OP = x\,\,(0 < x < 4) \Rightarrow BP = 4 - x\,;\,\,AP = \sqrt {4 + {x^2}} .\)
Khoảng thời gian để anh Ba từ vị trí xuất phát đến được điểm \(B\) là:
\({t_{\left( x \right)}} = {t_{AP}} + {t_{PB}} = \frac{{\sqrt {4 + {x^2}} }}{6} + \frac{{4 - x}}{{10}}(h)\,\, \Rightarrow {t'_{\left( x \right)}} = \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}}.\)
\({t'_{\left( x \right)}} = 0 \Leftrightarrow \frac{x}{{6\sqrt {4 + {x^2}} }} - \frac{1}{{10}} = 0 \Leftrightarrow 3\sqrt {4 + {x^2}} = 5x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{0 < x < 4}\\{4{x^2} = 9}\end{array} \Leftrightarrow x = \frac{3}{2}.} \right.\)
Bảng biến thiên:
| 
 \(x\)  | 
 0  | 
 \(\frac{3}{2}\)  | 
 4  | 
| 
 \(t'\left( x \right)\)  | 
 \( - \)  | 
 0 +  | 
 
  | 
| 
 \(t\left( x \right)\)  | 
 \(\frac{{11}}{{15}}\) 
  | 
 
  | 
 \(\frac{{\sqrt 5 }}{3}\) 
  | 
| 
 
  | 
 
  | 
 \(\frac{2}{3}\)  | 
 
  | 
Từ bảng biến thiên suy ra khoảng thời gian ngắn nhất để anh Ba từ vị trí xuất phát đến được điểm \({\rm{B}}\) là: \({t_{\min }} = \frac{2}{3}(h) = \frac{2}{3}.60\) (phút) \( = 40\) (phút). Chọn A.
Lời giải
Gọi vị trí thấp nhất của ống bương là là vị trí của máng nước (như hình vẽ).

Tung độ của điểm \[M\] là \({y_M} = 11 - 6,5 = 4,5\)
\( \Rightarrow \sin \widehat {xOM} = \frac{{{y_M}}}{{OM}} = \frac{{4,5}}{5} = 0,9 \Rightarrow \widehat {xOM} \approx 64^\circ \).
Ta có \(\widehat {TOM} = \widehat {TOx} + \widehat {xOM} = 90^\circ + 64^\circ = 154^\circ .\)
Vì thời gian cọn nước thực hiện 1 vòng quay là 3 phút nên thời gian ống bương di chuyển từ \(T\)đến \(M\) là \(\frac{{3.154}}{{360}} = \frac{{77}}{{60}}\) (phút). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



