Câu hỏi:

19/06/2024 183

Tổng phần thực và phần ảo của số phức \(z\) thỏa mãn \(iz + \left( {1 - i} \right)\bar z =  - 2i\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử số phức \(z\) có dạng: \(z = x + yi\,\,\left( {x\,,\,\,y \in \mathbb{R}} \right)\)

Ta có: \(iz + (1 - i)\bar z =  - 2i \Leftrightarrow i\left( {x + yi} \right) + \left( {1 - i} \right)\left( {x - yi} \right) =  - 2i \Leftrightarrow x - 2y - yi =  - 2i.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x - 2y = 0}\\{ - y =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = 2}\end{array} \Rightarrow x + y = 6} \right.} \right..\)

Tổng phần thực và phần ảo của số phức \(z\) bằng 6. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)

Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).

Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).

Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).

Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).

Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.

Dễ thấy \(x =  - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.

Lời giải

Vì \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) là trọng tâm của tam giác \[ABC\] suy ra: \(\left\{ {\begin{array}{*{20}{c}}{1 = \frac{{1 + 2 + a}}{3}}\\{c = \frac{{ - 3 - 4 - 2}}{3}}\\{3 = \frac{{3 + 5 + b}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 1}\\{c =  - 3}\end{array}} \right.} \right.\)

Vậy \(a + b + c =  - 2\). Chọn D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP