Câu hỏi:

19/06/2024 166 Lưu

Cho hình trụ có bán kính đáy bằng \(5\;\,{\rm{cm}}\) và khoảng cách giữa hai đáy là \(7\,\;{\rm{cm}}.\) Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục \(3\;\,{\rm{cm}}.\) Tính diện tích \(S\) của thiết diện được tạo thành.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi thiết diện là hình chữ nhật \[ABCD\], tâm 2 đáy lần lượt là \(O\) và \(O',\,\,CD\) thuộc đáy chứa tâm \(O,\,\,{\rm{H}}\) là trung điểm \[CD.\]

Ta có: \(\left\{ \begin{array}{l}OH \bot CD\\OH \bot BC\end{array} \right.\)\( \Rightarrow OH \bot \left( {ABCD} \right) \Rightarrow d\left( {OO';\left( {ABCD} \right)} \right) = OH = 3\,\,\;{\rm{cm}}.\)

\( \Rightarrow HC = HD = \sqrt {O{C^2} - O{H^2}}  = \sqrt {{5^2} - {3^2}}  = 4\,\;({\rm{cm)}}.\)

\( \Rightarrow AB = CD = 8\,\;{\rm{cm}}.\)

\( \Rightarrow {S_{ABCD}} = AB \cdot BC = 8 \cdot 7 = 56\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\) Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)

Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).

Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).

Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).

Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).

Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.

Dễ thấy \(x =  - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.

Lời giải

Từ đồ thị ta có:

• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} =  - 1 \Rightarrow d =  - c\);

• TCN: \(y =  - 1 \Rightarrow \frac{a}{c} =  - 1 \Rightarrow a =  - c\).

Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)

Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} =  - 8\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP