Câu hỏi:
19/06/2024 182Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\) và \[\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2.\] Tính \(I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x.\)
Quảng cáo
Trả lời:
Đặt \(u = \tan x \Rightarrow du = \frac{1}{{{{\cos }^2}x}}dx = \left( {1 + {{\tan }^2}x} \right)dx \Rightarrow \frac{{du}}{{{u^2} + 1}} = dx.\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow u = 0\\x = \frac{\pi }{4} \Rightarrow u = 1\end{array} \right.\).
Ta có: \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)dx} = \int\limits_0^1 {\frac{{f\left( u \right)}}{{{u^2} + 1}}} \,{\rm{d}}u = \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x \Rightarrow \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = 2\).
Do đó \[I = \int\limits_0^1 {f\left( x \right)} \,{\rm{d}}x = \int\limits_0^1 {\frac{{\left( {{x^2} + 1} \right)f\left( x \right)}}{{{x^2} + 1}}} \,{\rm{d}}x = \int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}\,} dx + \int\limits_0^1 {\frac{{f\left( x \right)}}{{{x^2} + 1}}} \,\,dx = 2 + 2 = 4\].
Chọn C.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Lời giải
Vì \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) là trọng tâm của tam giác \[ABC\] suy ra: \(\left\{ {\begin{array}{*{20}{c}}{1 = \frac{{1 + 2 + a}}{3}}\\{c = \frac{{ - 3 - 4 - 2}}{3}}\\{3 = \frac{{3 + 5 + b}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 1}\\{c = - 3}\end{array}} \right.} \right.\)
Vậy \(a + b + c = - 2\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.