Câu hỏi:
19/06/2024 46Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trừ từng vế các phương trình của hệ ta được:
\(3{x^2} - 3{y^2} = x - y \Leftrightarrow \left( {x - y} \right)\left( {3x + 3y - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - y = 0}\\{3x + 3y - 1 = 0}\end{array}} \right.\).
Kết hợp với hệ phương trình ta có:
\(\left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{3x + 3y - 1 = 0}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\end{array} \right.\)\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} + 3x = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{y = \frac{{1 - 3x}}{3}}\\{9{x^2} - 3x + 5 = 0\,\,(VN)}\end{array}} \right.}\end{array}} \right.\]\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{x = - 3}\\{y = - 3}\end{array}} \right.}\end{array}} \right.\).
Vậy hệ phương trình đã cho có 2 nghiệm \[\left( {0\,;\,\,0} \right),\,\,\left( { - 3\,;\,\, - 3} \right).\] Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!