Câu hỏi:
19/06/2024 262
Hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{{x^2} - 2{y^2} = 2x + y}\\{{y^2} - 2{x^2} = 2y + x}\end{array}} \right.\) có bao nhiêu nghiệm?
Quảng cáo
Trả lời:
Trừ từng vế các phương trình của hệ ta được:
\(3{x^2} - 3{y^2} = x - y \Leftrightarrow \left( {x - y} \right)\left( {3x + 3y - 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x - y = 0}\\{3x + 3y - 1 = 0}\end{array}} \right.\).
Kết hợp với hệ phương trình ta có:
\(\left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{c}}{3x + 3y - 1 = 0}\\{{x^2} - 2{y^2} = 2x + y}\end{array}} \right.\end{array} \right.\)\[ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x = y}\\{{x^2} + 3x = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{y = \frac{{1 - 3x}}{3}}\\{9{x^2} - 3x + 5 = 0\,\,(VN)}\end{array}} \right.}\end{array}} \right.\]\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{l}}{x = 0}\\{y = 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{l}}{x = - 3}\\{y = - 3}\end{array}} \right.}\end{array}} \right.\).
Vậy hệ phương trình đã cho có 2 nghiệm \[\left( {0\,;\,\,0} \right),\,\,\left( { - 3\,;\,\, - 3} \right).\] Chọn B.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Lời giải
Vì \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) là trọng tâm của tam giác \[ABC\] suy ra: \(\left\{ {\begin{array}{*{20}{c}}{1 = \frac{{1 + 2 + a}}{3}}\\{c = \frac{{ - 3 - 4 - 2}}{3}}\\{3 = \frac{{3 + 5 + b}}{3}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 1}\\{c = - 3}\end{array}} \right.} \right.\)
Vậy \(a + b + c = - 2\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.