Câu hỏi:
19/06/2024 405Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
\(f'\left( x \right) \cdot \left( {3\left| {f\left( x \right)} \right| - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{f'\left( x \right) = 0}\\{3\left| {f\left( x \right)} \right| = m}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \pm 1}\\{\left| {f\left( x \right)} \right| = \frac{m}{3}}\end{array}} \right.} \right..\)
Suy ra yêu cầu bài toán \( \Leftrightarrow \left| {f\left( x \right)} \right| = \frac{m}{3}\) có 6 nghiệm phân biệt khác \( \pm 1.\)
\( \Rightarrow \frac{m}{3} \in \left( {0\,;\,\,2} \right) \Rightarrow m \in \left( {0\,;\,\,6} \right)\). Vậy có 5 giá trị nguyên của \(m\) thỏa mãn ycbt.
Chọn A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!