Câu hỏi:
19/06/2024 121Cho hàm số \[f\left( x \right)\] có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x - 2} \right),\,\,\forall x \in \mathbb{R}.\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {{x^3} - 3{x^2} + m} \right)\) có đúng 8 điểm cực trị?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đồ thị hàm số \(y = \left| {{x^4} - 2m{x^2} + 25} \right|\) có 7 điểm cực trị khi và chỉ khi \(f\left( x \right) = {x^4} - 2m{x^2} + 25\) có 3 cực trị và giá trị cực tiểu nhỏ hơn 0.
\(f'\left( x \right) = 4{x^3} - 4xm = 4x\left( {{x^2} - m} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{{x^2} = m}\end{array}} \right.\).
Yêu cầu bài toán tương đương \(\left[ {\begin{array}{*{20}{l}}{m > 0}\\{f( \pm m) < 0}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 0}\\{{m^2} - 2m.m + 25 > 0}\end{array} \Rightarrow m \in \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4} \right\}} \right.} \right.\).
Do đó \(S = 1 + 2 + 3 + 4 = 10\). Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!