Câu hỏi:
19/06/2024 463Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tập xác định: \(D = \mathbb{R}\backslash \{ m\} \). Để hàm số có giá trị lớn nhất trên \[\left[ {1\,;\,\,3} \right]\] thì \(m \notin \left[ {1\,;\,\,3} \right].\)
Ta có \(y' = \frac{{ - 2m - 6}}{{{{\left( {x - m} \right)}^2}}}\).
• Trường hợp 1: \( - 2m - 6 > 0 \Leftrightarrow m < - 3\).
Khi đó \({\max _{x \in \left[ {1\,;\,\,3} \right]}}y = y\left( 3 \right) = \frac{{m + 9}}{{3 - m}}\).
Để giá trị lớn nhất trên đoạn \[\left[ {1\,;\,\,3} \right]\] là số dương thì \(\frac{{m + 9}}{{3 - m}} > 0 \Leftrightarrow m + 9 > 0 \Leftrightarrow m > - 9\)
Vậy các số nguyên \(m\) thỏa là \( - 8\, & ;\,\, - 7\, & ;\,\, - 6\, & ;\,\, - 5\, & ;\,\, - 4.\)
• Trường hợp 2: \( - 2m - 6 < 0 \Leftrightarrow m > - 3\).
Khi đó \[{\max _{x \in \left[ {1\,;\,\,3} \right]}}y = y(1) = \frac{{m + 7}}{{1 - m}}\].
Để giá trị lớn nhất trên đoạn \[\left[ {1\,;\,\,3} \right]\] là số dương thì \(\frac{{m + 7}}{{1 - m}} > 0 \Leftrightarrow 1 - m > 0 \Leftrightarrow m < 1\)
Vậy các số nguyên thỏa mãn là \( - 2\,;\,\, - 1\,;\,0\).
• Trường hợp 3: \( - 2m - 6 = 0 \Leftrightarrow m = - 3\).
Khi đó \(y = 1\) nên \({\max _{x \in \left[ {1\,;\,\,3} \right]}}y = 1\).
Vậy \(m = - 3\) thỏa mãn.
Kết luận: có 9 số nguyên thỏa mãn yêu cầu bài toán. Chọn A.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!