Câu hỏi:
19/06/2024 215Cho hàm số \(y = \frac{{x - 1}}{{x + 2}}\), gọi \(d\) là tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(m - 2.\) Biết đường thẳng \(d\) cắt tiệm cận đứng của đồ thị hàm số tại điểm \(A\left( {{x_1};{y_1}} \right)\) và cắt tiệm cận ngang của đồ thị hàm số tại điểm \(B\left( {{x_2};\,{y_2}} \right).\) Gọi \(S\) là tập hợp các số \(m\) sao cho \({x_2} + {y_1} = - 5.\) Tính tổng bình phương các phần tử của \(S\)?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Điều kiện \(m \ne 0.\)
Phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là \(x + 2 = 0\) và \(y - 1 = 0.\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng \(m - 2\) là:
\(\left( d \right):y = \frac{{3x}}{{{m^2}}} + \frac{{{m^2} - 6m + 6}}{{{m^2}}}.\)
Đường thẳng \(d\) cắt tiệm cận đứng của đồ thị hàm số tại điểm \(A\left( { - 2\,;\,\,\frac{{m - 6}}{m}} \right)\) và cắt tiệm cận ngang của đồ thị hàm số tại điểm \(B\left( {2m - 2\,;\,\,1} \right)\).
Theo giả thiết ta có \[2m - 2 + \frac{{m - 6}}{m} = - 5 \Rightarrow m = 1\,;\,\,m = - 3\]
Vậy bằng tổng bình phương các phần tử của \(S\) bằng 10. Chọn A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!