Cho tứ diện \[ABCD\] có các cạnh \[AB,\,\,AC,\,\,AD\] vuông góc với nhau từng đôi một và \(AB = 3a,\,\,AC = 6a,\,\,AD = 4a.\) Gọi \[M,\,\,N,\,\,P\] lần lượt là trung điểm của các cạnh \[BC,\,\,CD,\,\,BD.\] Thể tích khối đa diện \[AMNP\] là
Quảng cáo
Trả lời:

Ta có: \(\frac{{{V_{D.APN}}}}{{{V_{D.ABC}}}} = \frac{{DP}}{{DB}} \cdot \frac{{DN}}{{DC}} = \frac{1}{4};\)
\(\frac{{{V_{B.APM}}}}{{{V_{B.ACD}}}} = \frac{{BP}}{{BD}} \cdot \frac{{BM}}{{BC}} = \frac{1}{4};\frac{{{V_{C.AMN}}}}{{{V_{C.ABD}}}} = \frac{{CM}}{{CB}} \cdot \frac{{CN}}{{CD}} = \frac{1}{4}.\)
Mà: \({V_{AMNP}} = {V_{ABCD}} - {V_{DAPN}} - {V_{BAPM}} - {V_{CAMN}} = \frac{1}{4}{V_{ABCD}}\)
\( = \frac{1}{4}\left( {\frac{1}{6}AB \cdot AC \cdot AD} \right) = \frac{1}{4}\left( {\frac{1}{6}3a \cdot 6a \cdot 4a} \right) = 3{a^3}\). Chọn B.- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)
Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).
Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).
Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).
Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).
Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.
Dễ thấy \(x = - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.
Lời giải
Từ đồ thị ta có:
• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} = - 1 \Rightarrow d = - c\);
• TCN: \(y = - 1 \Rightarrow \frac{a}{c} = - 1 \Rightarrow a = - c\).
Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)
Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} = - 8\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.