Câu hỏi:

20/06/2024 252 Lưu

Media VietJack

Một con xoay được thiết kế gồm hai khối trụ \(\left( {{T_1}} \right),\,\,\left( {{T_2}} \right)\) chồng lên khối nón \(\left( N \right)\) (tham khảo mặt cắt ngang qua trục như hình vẽ). Khối trụ \(\left( {{T_1}} \right)\) có bán kính đáy \(r(\;{\rm{cm}})\), chiều cao \({h_1}\,\,(\;{\rm{cm}}).\) Khối trụ \(\left( {{T_2}} \right)\) có bán kính đáy \(2r\,\,(\;{\rm{cm}})\), chiều cao \({h_2} = 2{h_1}\,\,(\;{\rm{cm}}).\)

Khối nón \(\left( N \right)\) có bán kính đáy \(r\,\,(\;{\rm{cm}})\), chiều cao \({h_n} = 4{h_1}\,\,(\;{\rm{cm}}).\) Biết rằng thể tích toàn bộ con xoay bằng \(32\,\,{\rm{c}}{{\rm{m}}^3}.\) Thể tích khối nón \(\left( N \right)\) bằng

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo bài ta có \({h_n} = 4{h_1} \Rightarrow {h_1} = \frac{1}{4}{h_n};{h_2} = 2{h_1} = \frac{1}{2}{h_n}\).

Thể tích toàn bộ con xoay là:

\[V = {V_{\left( {T1} \right)}} + {V_{\left( {T2} \right)}} + {V_{\left( N \right)}} = \pi  \cdot r{ \cdot ^2}{h_1} + \pi  \cdot {\left( {2r} \right)^2} \cdot {h_2} + \frac{1}{3}\pi  \cdot {r^2} \cdot {h_n}\]

\( \Leftrightarrow \pi  \cdot {r^2} \cdot \frac{1}{4}{h_n} + \pi  \cdot 4{r^2} \cdot \frac{1}{2}{h_n} + \frac{1}{3}\pi  \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{3}{4}\left( {\frac{1}{3}\pi  \cdot {r^2} \cdot {h_n}} \right) + 6\left( {\frac{1}{3}\pi  \cdot {r^2} \cdot {h_n}} \right)\)

\( \Leftrightarrow \frac{1}{3}\pi  \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{{31}}{4}\,\,\,\left( {\frac{1}{3}\pi  \cdot {r^2} \cdot {h_n} = 4} \right)\).

Vậy thể tích khối nón \(\left( N \right)\) là: \({V_{\left( N \right)}} = 4\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\) (nghìn đồng) là giá phòng khách sạn \((x > 400).\)

Giá chênh lệch sau khi tăng là: \(x - 400\) (nghìn đồng).

Số phòng trống lúc này là: \(2 \cdot \frac{{x - 400}}{{20}} = \frac{{x - 400}}{{10}}\) (phòng).

Số phòng cho thuê lúc này là: \(50 - \frac{{x - {{400}^{10}}}}{{20}} = \frac{{900 - x}}{{10}}\) (phòng).

Số tiền phòng thu được là: \(f\left( x \right) = x \cdot \left( {\frac{{900 - x}}{{10}}} \right) = \frac{{ - {x^2} + 900x}}{{10}}\) (nghìn đồng).

Ta cần tìm \(x > 400\) sao cho \(f\left( x \right)\) đạt giá trị lớn nhất.

Dễ thấy \(x =  - \frac{{900}}{{2 \cdot ( - 1)}} = 450\) thì lớn nhất. Đáp án: 450.

Lời giải

Từ đồ thị ta có:

• TCĐ: \(x = 1 \Rightarrow \frac{{ - d}}{{{c_a}}} = 1 \Rightarrow \frac{d}{c} =  - 1 \Rightarrow d =  - c\);

• TCN: \(y =  - 1 \Rightarrow \frac{a}{c} =  - 1 \Rightarrow a =  - c\).

Đồ thị cắt trục hoành tại điểm: \(x = 2 \Rightarrow \frac{{ - b}}{a} = 2 \Rightarrow \frac{{ - b}}{{ - c}} = 2 \Rightarrow b = 2c\)

Vậy \(T = \frac{{a - 2b + 3d}}{c} = \frac{{ - c - 4c - 3c}}{c} =  - 8\). Chọn C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP