Câu hỏi:
20/06/2024 86Khối nón \(\left( N \right)\) có bán kính đáy \(r\,\,(\;{\rm{cm}})\), chiều cao \({h_n} = 4{h_1}\,\,(\;{\rm{cm}}).\) Biết rằng thể tích toàn bộ con xoay bằng \(32\,\,{\rm{c}}{{\rm{m}}^3}.\) Thể tích khối nón \(\left( N \right)\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Theo bài ta có \({h_n} = 4{h_1} \Rightarrow {h_1} = \frac{1}{4}{h_n};{h_2} = 2{h_1} = \frac{1}{2}{h_n}\).
Thể tích toàn bộ con xoay là:
\[V = {V_{\left( {T1} \right)}} + {V_{\left( {T2} \right)}} + {V_{\left( N \right)}} = \pi \cdot r{ \cdot ^2}{h_1} + \pi \cdot {\left( {2r} \right)^2} \cdot {h_2} + \frac{1}{3}\pi \cdot {r^2} \cdot {h_n}\]
\( \Leftrightarrow \pi \cdot {r^2} \cdot \frac{1}{4}{h_n} + \pi \cdot 4{r^2} \cdot \frac{1}{2}{h_n} + \frac{1}{3}\pi \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{3}{4}\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n}} \right) + 6\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n}} \right)\)
\( \Leftrightarrow \frac{1}{3}\pi \cdot {r^2} \cdot {h_n} \Leftrightarrow 31 = \frac{{31}}{4}\,\,\,\left( {\frac{1}{3}\pi \cdot {r^2} \cdot {h_n} = 4} \right)\).
Vậy thể tích khối nón \(\left( N \right)\) là: \({V_{\left( N \right)}} = 4\,\,\left( {\;{\rm{c}}{{\rm{m}}^3}} \right)\). Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng
Câu 7:
Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) = - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng
về câu hỏi!