Câu hỏi:

20/06/2024 152

Có 8 quyển sách Địa lí, 12 quyển sách Lịch sử, 10 quyển sách Giáo dục công dân (các quyển sách cùng một môn thì giống nhau) được chia thành 15 phần quả, mỗi phần gồm 2 quyển khác loại. Lấy ngẫu nhiên 2 phần quà từ 15 phần quà đó. Xác suất để hai phần quà lấy được khác nhau là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số phần quà Sử - Địa là \[xx\], số phần quà Sử - GDCD là \[yy\] và số phần quà Địa - GDCD là \[zz.\]

Tổng số phần quà là 15 nên \(x + y + z = 15.\)

Phần quà có môn sử có 2 kiểu: Sử - Địa (\(x\) phần quà) và Sử - GDCD (\(y\) phần quà).

Do có 12 quyển sách sử nên 12 quyển này nằm hoàn toàn trong 2 kiểu phần quà trên.

Do đó: \(x + y = 12\).

Tương tự, ta có: Địa: \(z + x = 8;\) GDCD: \(y + z = 10.\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x + y + z = 15}\\{x + y = 12}\\{y + z = 10}\\{x + z = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 5}\\{y = 7}\\{z = 3}\end{array}} \right.} \right.\).

Suy ra số phần quà Sử - Địa là 5; Sử - GDCD là 7; Địa - GDCD là 3.

Chọn 2 trong 15 phần quà \( \Rightarrow \) Không gian mẫu \(n\left( \Omega  \right) = C_{15}^2 = 105\).

Gọi A là biến cố: "Hai phần quà lấy được khác nhau", khi đó ta có:

\(n\left( A \right) = C_5^1 \cdot C_7^1 + C_7^1 \cdot C_3^1 + C_3^1 \cdot C_5^1 = 71\).

Vậy \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( P \right)}} = \frac{{71}}{{105}}.\] Chọn B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một khách sạn có 50 phòng, người ta tính rằng nếu mỗi phòng cho thuê với giá 400 nghìn đồng một ngày thì tất cả các phòng đều hết. Biết răng cứ mỗi lần tăng giá thêm 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi người quản lý phải quyết định giá phòng là bao nhiêu nghìn đồng để thu nhập của khách sạn trong ngày là lớn nhất?

Xem đáp án » 11/07/2024 48,592

Câu 2:

Trong không gian \[Oxyz,\] tam giác \[ABC\] với \(A\left( {1\,;\,\, - 3\,;\,\,3} \right),\,\,B\left( {2\,;\,\, - 4\,;\,\,5} \right),C\left( {a\,;\,\, - 2\,;\,\,b} \right)\) nhận điểm \(G\left( {1\,;\,\,c\,;\,\,3} \right)\) làm trọng tâm của nó thì giá trị của tổng \(a + b + c\) bằng

Xem đáp án » 19/06/2024 19,997

Câu 3:

Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) (với \[a,\,\,b,\,\,c,\,\,d\] là số thực) có đồ thị như hình dưới đây. Tính giá trị biểu thức \(T = \frac{{a - 2b + 3d}}{c}.\)
Media VietJack

Xem đáp án » 19/06/2024 15,606

Câu 4:

Tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y = {x^3} + \left( {{m^2} - 2} \right)x + 2{m^2} + 4\) cắt các trục tọa độ \[Ox,\,\,Oy\] lần lượt tại \[A,\,\,B\] sao cho diện tích tam giác \[OAB\] bằng 8 là

Xem đáp án » 19/06/2024 8,691

Câu 5:

Trong mặt phẳng Oxy, cho đường tròn \((C):{\left( {x - 1} \right)^2} + {\left( {y - 4} \right)^2} = 4.\) Phương trình tiếp tuyến với đường tròn \((C)\) song song với đường thẳng \(\Delta :4x - 3y + 2 = 0\) là

Xem đáp án » 19/06/2024 6,905

Câu 6:

Cho hàm số \(f\left( x \right)\) thỏa mãn \(f'\left( x \right) = a{x^2} + \frac{b}{{{x^3}}},\,\,f'\left( 1 \right) = 3,\,\,f\left( 1 \right) = 2,\,\,f\left( {\frac{1}{2}} \right) =  - \frac{1}{{12}}.\) Khi đó \(2a + b\) bằng

Xem đáp án » 19/06/2024 5,805

Câu 7:

Cho tập A là tập hợp các số tự nhiên, mà mỗi số tự nhiên trong A đều chia hết cho 3 hoặc chia hết cho 5 , hoặc chia hết cho cả 3 và 5 . Trong đó có 2019 số chia hết cho 3; 2020 số chia hết cho 5,195 số chia hết cho 15. Hỏi tập A có bao nhiêu phần tử?

Xem đáp án » 11/07/2024 4,662
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay